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ABSTRACT

Large galaxy samples from multi-object Integral Field Spectroscopic (IFS) surveys now allow
for a statistical analysis of the I ∼ 0 galaxy population using resolved kinematic measurements.
However, the improvement in number statistics comes at a cost, with multi-object IFS survey
more severely impacted by the effect of seeing and lower signal-to-noise. We present an
analysis of ∼ 1800 galaxies from the SAMI Galaxy Survey taking into account these effects.
We investigate the spread and overlap in the kinematic distributions of the spin parameter
proxy _'e as a function of stellar mass and ellipticity Ye. For SAMI data, the distributions
of galaxies identified as regular and non-regular rotators with kinemetry show considerable
overlap in the_'e -Ye diagram. In contrast, visually classified galaxies (obvious and non-obvious
rotators) are better separated in _'e space, with less overlap of both distributions. Then, we
use a Bayesian mixture model to analyse the observed _'e -log("★/"�) distribution. By
allowing the mixture probability to vary as a function of mass, we investigate whether the data
are best fit with a single kinematic distribution or with two. Below log("★/"�) ∼ 10.5 a
single beta distribution is sufficient to fit the complete _'e distribution, whereas a second beta
distribution is required above log("★/"�) ∼ 10.5 to account for a population of low-_'e
galaxies, presenting the cleanest separation of the two kinematic populations. We apply the
same analysis to mock-observations from different cosmological simulations. The mixture
model predicts a bimodal _'e distribution for all simulations, albeit with different positions
of the _'e peaks and with different ratios of both populations as a function of stellar mass
as compared to observations. Our analysis validates the conclusions from previous, smaller
IFS surveys, but also demonstrates the importance of using selection criteria for identifying
different kinematic classes that are dictated by the quality and resolution of the observed or
simulated data.
Key words: cosmology: observations – galaxies: evolution – galaxies: formation – galaxies:
kinematics and dynamics – galaxies: stellar content – galaxies: structure
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1 INTRODUCTION

The distribution of ordered to random stellar motions in present-
day galaxies provides strong constraints on how galaxies assembled
their mass over cosmic time. Historically, the kinematic properties

© 2020 The Authors



2 Jesse van de Sande

of spiral galaxies were already known even as the extragalactic na-
ture of these galaxies was still being debated (Slipher 1914; Pease
1916). In contrast, the kinematic variety and complexity of early-
type galaxies was revealed at a much later stage (for reviews see
de Zeeuw & Franx 1991; Cappellari 2016). One of the major dis-
coveries for early-type galaxies was that with increasing luminosity,
elliptical galaxies transition from being predominantly rapid to pre-
dominantly slow rotators (Bertola & Capaccioli 1975; Illingworth
1977; Davies et al. 1983), and that the flattening of these slow ro-
tating ellipticals was due to anisotropy rather than rotation (Binney
1978; Schechter & Gunn 1979).

A key remaining questions about the kinematic properties of
galaxies is whether the distribution of rotation is bimodal with con-
trasting formation histories or a continuous transition from one type
into another. While there are indications for a bimodal distribution
between different types of elliptical galaxies or within the early-type
population, most of the evidence is circumstantial. The idea of two
intrinsically different types of ellipticals originated from the con-
nection between the kinematic properties of ellipticals with boxy
and disky isophotes (Carter 1987; Bender 1988; Kormendy & Ben-
der 1996), or with cuspy cores versus inner power-law stellar light
profiles (Faber et al. 1997), that are thought to be related to the
merger history.

One of the first mentions of a dichotomy in the early-type
population, i.e., two physically distinct groups as based on mor-
phological and photometric properties, is by Ferrarese et al. (1994)
further supported by Lauer et al. (1995; but see also Carollo et al.
1997). Subsequently, Kormendy & Bender (1996) suggest a di-
chotomy between disky and boxy ellipticals based on the relation
between the isophotal boxiness parameter 04/0 and +/f (the ratio
of the velocity + to the velocity dispersion f), however, they men-
tion the possibility that boxy and disky ellipticals form a continuous
sequence. In contrast, Ferrarese et al. (2006) present evidence in
favour of a continuous distribution in the logarithmic inner slopes
of early-type galaxies, instead of a bimodality. Kormendy & Bender
(2012) present an extensive list of properties classifying elliptical
galaxies into giant ellipticals ("+ . −21.5) versus normal and
dwarf true ellipticals ("+ & −21.5<06), a continuation of the re-
sults fromKormendy &Bender (1996) and Kormendy et al. (2009).
Among other properties, giant ellipticals should have cores, rotate
slowly, and have boxy-distorted isophotes.

With two-dimensional (2D) kinematic measurements from in-
tegral field spectroscopy (IFS, e.g., SAURON Bacon et al. 2001;
de Zeeuw et al. 2002), Emsellem et al. (2007) did not find a clear
relation between the spin parameter proxy _' and boxy versus disky
early-types, nor between _' and core versus power-law early-type
galaxies. Furth results from ATLAS3D survey indicate no clear
trend between the boxiness parameter 04 and the fast rotator (FR)
and slow rotator (SR) classes (Emsellem et al. 2011). However,
while Krajnović et al. (2013) find no evidence for a bimodal dis-
tribution of nuclear slopes of ATLAS3D galaxies, the combination
of fe and _'e is found to be a good predictor for the shape of the
inner-light profile (see also Krajnović et al. 2020).

In parallel, Emsellem et al. (2007) identified two rotational
types of early-type galaxies from a visual inspection of the + and
f maps, quantitatively classified as fast and slow rotators having
_' ≥ 0.1 and _' < 0.1, respectively. In subsequent surveys, such
as ATLAS3D, a combination of the kinemetry method, which
quantifies the regularity of the velocity field (Krajnović et al. 2006,
2011), and the spin-parameter proxy _' and ellipticity were used
to classify galaxies as fast and slow rotators (Emsellem et al. 2011).
One of the main results from the ATLAS3D survey is that the vast

majority of early-types (86%) belong to a single family of fast-
rotating disk galaxies with ordered rotation and regular velocity
fields (Krajnović et al. 2011; Emsellem et al. 2011). Only a small
fraction (14%) of early-type galaxies are slow rotating with more
complex dynamical and morphological (e.g., triaxial) structures.

While the evidence for at least two kinematic populations of
ellipticals and of early-type galaxies has been growing (e.g., Cap-
pellari 2016; Graham et al. 2018), there has been relatively little
discussion on the possibility of a continuous distribution or on the
overlap of properties between classes. Given the complexity of how
massive (log("★/"�)<10.5) galaxies assemble their stellar mass
over time (e.g., see Naab et al. 2014), assigning galaxies to spe-
cific classes without expecting considerable overlap might be an
unprofitable endeavour. In large volume cosmological simulations
(e.g., eagle Schaye et al. 2015, Crain et al. 2015; horizon-agn
Dubois et al. 2014; illustris Genel et al. 2014, Vogelsberger et al.
2014; illustris-tng Springel et al. 2018, Pillepich et al. 2018;
magneticum Dolag et al., in prep, Hirschmann et al. 2014) the
properties of fast and slow rotators have been studied in detail, but
the fast/slow selection methods almost always follow the observa-
tional criteria (Penoyre et al. 2017; Choi et al. 2018; Lagos et al.
2018b; Schulze et al. 2018; Walo-Martín et al. 2020; Pulsoni et al.
2020). Thus, the question arises as to how much insight we will
gain from comparisons to cosmological simulations when quanti-
tatively many fundamental galaxy relations are still poorly matched
to observations (van de Sande et al. 2019).

With the rise of large multi-object IFS surveys, such as the
SAMI Galaxy Survey (Sydney-AAO Multi-object Integral field
spectrograph; N ∼ 3000; Croom et al. 2012; Bryant et al. 2015) and
the SDSS-IVMaNGASurvey (SloanDigital SkySurveyData;Map-
ping Nearby Galaxies at Apache Point Observatory; N ∼ 10000;
Bundy et al. 2015), we are now able to determine the properties of
different kinematic populations as a function of stellar mass using
a statistical framework that can be similarly applied when studying
mock-galaxies extracted from cosmological simulations. However,
the observed kinematic measurements of + and f in SAMI and
MaNGA are more severely impacted by atmospheric seeing as well
as having larger kinematic uncertainties due to the lower signal-
to-noise (S/N) as compared to earlier IFS surveys (e.g., SAURON,
de Zeeuw et al. 2002; ATLAS3D Cappellari et al. 2011; CALIFA,
Sánchez et al. 2012). Furthermore, these multi-object IFS samples
include galaxies of all morphological types and uncertainties in
visual morphological classification could introduce additional chal-
lenges. Therefore, a new approach is needed in order to separate
non-regular or slow rotating galaxies from the dominant fast or reg-
ular rotating population when the S/N and seeing strongly impact
the data quality.

Different methods of correcting the measured _'e for seeing
now exist (Graham et al. 2018; Harborne et al. 2020a; Chung et al.
2020), although the corrections are less certain for galaxies with ir-
regular velocity fields. It remains to be seenwhether the results from
statistical samples of recent IFS surveys are significantly impacted
by seeing, such that an intrinsically-bimodal galaxy distribution
would be observed as unimodal. Thus, we need to reinvestigate and
adapt existing fast and slow rotator selection criteria (e.g., Emsellem
et al. 2007, 2011; Cappellari 2016) and investigate the amount of
overlap between the different distributions using multi-object IFS
data combined with mock-observations from simulations with rela-
tively low spatial resolution.

In this paper, we revisit dynamical galaxy demographics in the
era of large IFS samples, where the impact of seeing and data qual-
ity is more severe than in previous IFS surveys. We use the SAMI
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Galaxy Survey, which contains ∼3000 galaxies across a large range
in galaxy stellar mass, morphology, seeing conditions, and data
quality. It provides an ideal test set to investigate the challenges
set out above. The main goals of this paper are 1) to determine the
impact of different seeing correction methods on the kinematic pop-
ulations, 2) to investigate the scatter or overlap in the fast and slow
rotator distributions, 3) to provide updated methods and selection
criteria for separating galaxies that belong to different kinematic
families in both observations and simulations, and 4) to consolidate
results from different IFS surveys over a range of sample sizes and
data quality.

The paper is organised as follows: Section 2 presents the data
from the observations. The core of our analysis is presented in
Section 3 where we demonstrate our new approach to investigating
the fast and slow rotator populations, and Section ?? presents an
analysis using large cosmological simulations. We discuss previous
claims for a bimodality in detail in Section 5, and summarise and
conclude in Section 6. Throughout the paper we assume a ΛCDM
cosmology with Ωm=0.3, ΩΛ = 0.7, and �0 = 70 km s−1 Mpc−1.

2 DATA

2.1 SAMI Galaxy Survey

SAMI is a multi-object IFS mounted at the prime focus of the 3.9m
Anglo-Australian Telescope (AAT), with 13 hexabundles (Bland-
Hawthorn et al. 2011; Bryant et al. 2011; Bryant &Bland-Hawthorn
2012; Bryant et al. 2014) deployable over a 1 degree diameter field
of view. Each hexabundle consists of 61 individual 1.′′6 fibres, and
covers a ∼ 15′′ diameter region on the sky. The 793 object fibres
and 26 individual sky fibres are fed into the AAOmega spectrograph
(Saunders et al. 2004; Smith et al. 2004; Sharp et al. 2006), with a
blue (3750-5750Å) and red (6300-7400Å) arm. With the 580V and
1000R grating, the spectral resolution is Rblue ∼ 1810 at 4800Å,
and Rred ∼ 4260 at 6850Å (Scott et al. 2018), respectively. In order
to cover gaps between fibres and to create data cubeswith 0.′′5 spaxel
size, all observations are carried out using a six- to seven-position
dither pattern (Sharp et al. 2015; Allen et al. 2015).

The SAMI Galaxy Survey (Croom et al. 2012; Bryant et al.
2015) contains∼ 3000 galaxies between redshift 0.004 < I < 0.095
with a broad range in galaxy stellar mass (M∗ = 108 − 1012M�)
and galaxy environment (field, groups, and clusters). Galaxies were
selected from the Galaxy andMass Assembly (GAMA; Driver et al.
2011) campaign in theGAMAG09,G12 andG15 regions, in combi-
nation with eight high-density cluster regions sampled within radius
'200 (Owers et al. 2017). We use 3072 unique galaxies from inter-
nal data release v0.12. Reduced data-cubes and stellar kinematic
data products for 1559 galaxies in the GAMA fields are available
as part of the first and second SAMI Galaxy Survey data releases
(Green et al. 2018; Scott et al. 2018) and DR3 will be released soon
(Croom et al. in preparation).

2.1.1 Ancillary Data

For galaxies in theGAMAfields, aperturematched 6−8 colourswere
measured from reprocessed SDSS Data Release Seven (York et al.

2000; Kelvin et al. 2012), by the GAMA survey (Hill et al. 2011;
Liske et al. 2015). For the cluster environment, photometry from the
SDSS (York et al. 2000) and VLT Survey Telescope (VST) ATLAS
imaging data are used (Shanks et al. 2013; Owers et al. 2017). Stellar
masses are derived from the rest-frame 8-band absolute magnitude
and 6−8 colour, by employing the colour-mass relation as outlined in
Taylor et al. (2011). A Chabrier (2003) stellar initial mass function
and exponentially declining star formation histories are assumed in
deriving the stellar masses. Formore details see Bryant et al. (2015).

We use the Multi-Gaussian Expansion (MGE; Emsellem et al.
1994; Cappellari 2002) technique, and the code from Scott et al.
(2013) to derive structural parameters of galaxies from the imag-
ing data from the GAMA-SDSS (Driver et al. 2011), SDSS (York
et al. 2000), and VST (Shanks et al. 2013; Owers et al. 2017).
Those parameters are the effective radius (the half-light radius of
the semi-major axis; 'e), the ellipticity of the galaxy within one
effective radius (ne), and position angles. For more details, we refer
to D’Eugenio et al. (in prep).

Visual morphological classifications are described in detail
in Cortese et al. (2016). The classifications are determined from
SDSS and VST gri colour images and are based on the Hubble type
(Hubble 1926), following the scheme used by Kelvin et al. (2014).
Early- and late-type galaxies are divided according to their shape, the
presence of spiral arms and/or signs of star formation. Early-types
with disks are then classified as S0s and pure bulges as ellipticals (E).
Late-types galaxies with a disk plus bulge component are classified
as early-spirals, and galaxies with only a disk component as late-
spirals.

2.1.2 Stellar Kinematics

The stellar kinematic measurements for the SAMI Galaxy Survey
are described in detail in van de Sande et al. (2017b). A short sum-
mary is provided below. We use the penalized pixel fitting code
(pPXF; Cappellari & Emsellem 2004; Cappellari 2017) assuming a
Gaussian line-of-sight velocity distribution (LOSVD). Before com-
bining the blue and red spectra, the red spectra are convolved to
match the instrumental resolution in the blue. The combined spec-
tra are rebinned onto a logarithmic wavelength scale with constant
velocity spacing (57.9 km s−1). We derive a set of radially-varying
optimal templates from the SAMI annular-binned spectra, using
the MILES stellar library (Sánchez-Blázquez et al. 2006; Falcón-
Barroso et al. 2011). For each individual spaxel, pPXF is given a
set of two or three optimal templates from the annular bin in which
the spaxel is located as well as the optimal templates from neigh-
bouring annular bins. We estimate the uncertainties on the LOSVD
parameters from 150 simulated spectra.

We visually inspect the 3072 SAMI kinematic maps in the
GAMA and cluster regions, and 140 galaxies are flagged and ex-
cluded due to unreliable kinematic maps caused by nearby objects
or mergers that influence the stellar kinematics of the main object.
1025 galaxies are excluded because the radius out to which we
can accurately measure the stellar kinematics is less than 2.′′0 or
'e<1.′′5. We also remove 40 galaxies where the ratio of the point-
spread-function to the effective radius of a galaxy is larger than
fPSF/'e > 0.6. We adopt the limit of 0.6 because of the relatively
large impact of beam-smearing on _'e at these fPSF/'e values (see
Harborne et al. 2020a). Lastly, for another 35 galaxies no reliable
_' aperture correction out to one 'e could be derived (see Sec-
tion 3.1). This brings the total sample of galaxies with kinematic
measurements to 1832.

The stellar kinematic completeness as compared to the full
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Figure 1. Stellar mass distribution of the full SAMI sample (light-grey) and
stellar kinematic sample (grey). The green line shows the completeness in
bins of stellar mass. The SAMI stellar kinematic sample is biased towards
high stellar mass as compared to the full SAMI sample, with 50 percent
completeness reached above log("★/"�) ∼ 9.55.

SAMI Galaxy Survey sample is presented in Fig. 1. The largest
fraction of galaxies without kinematic measurements is below stel-
lar mass of log("★/"�) < 9.5. Because the stellar kinematic
completeness drops rapidly below 50 percent at low stellar mass
(see Fig. 1), we do not use the remaining 67 galaxies below
log("★/"�) < 9.5 for the core analysis of this paper.

We investigate whether the kinematic sample above this mass
limit of log("★/"�) = 9.5 is a representative subset of the full
SAMI sample by comparing the 6 − 8 colour distributions in Fig.2.
For the vast majority of the sample (> 95 percent) we find that
the colour distribution of the stellar kinematic sample matches that
of the full sample, with the exception of the bluest (6 − 8 < 0.6)
and some of the reddest (1.4 < 6 − 8 < 1.55) galaxies where the
completeness drops below 75 percent. Thus, we conclude that the
kinematic sample has no colour bias as compared to the full SAMI
sample which was drawn from the volume-limited GAMA survey
with high completeness (∼ 90 percent). The final number of galaxies
from the SAMIGalaxySurveywith usable stellar velocity and stellar
velocity dispersion maps above a stellar mass of log("★/"�) >
9.5 is 1765; we dub this set of galaxies the "SAMI stellar kinematic
sample".

3 KINEMATIC IDENTIFIERS IN SEEING-IMPACTED
DATA

3.1 Fast and Slow Rotators in Seeing Impacted Data

Fast and slow rotator galaxies are commonly selected from a com-
bination of the spin parameter proxy _' (Emsellem et al. 2007) and
the ellipticity Y. _' quantifies the ratio of the ordered rotation and
the random motions in a stellar system, and is given by:

_' =
〈' |+ |〉

〈'
√
+2 + f2〉

=

∑#B?G

9=0 � 9' 9 |+ 9 |∑#B?G

9=0 � 9' 9

√
+2
9
+ f2

9

. (1)

Here, the subscript 9 refers to the position of a spaxel within the
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Figure 2. Colour distribution of the full SAMI sample (light-grey) and
stellar kinematic sample (grey) for all galaxies above a stellar mass of
log("★/"�)>9.5. The green line shows the completeness in bins of 6 − 8
colour. In the region where 95 percent of the data lie (0.63 < 6− 8 < 1.36),
we find no colour bias in the stellar kinematic sample as compared to the
full SAMI sample. This demonstrates that our kinematic sample is a repre-
sentative subset of the full galaxy population.

ellipse, � 9 the flux of the 9 Cℎ spaxel, + 9 is the stellar velocity in
km s−1, f9 the velocity dispersion in km s−1. ' 9 is the semi-major
axis of the ellipse on which spaxel 9 lies, not the circular projected
radius to the centre as is used by e.g., Emsellem et al. (2007, 2011).
We use the unbinned flux, velocity, and velocity dispersion maps as
described in Section 2.1.2. The sum is taken over all spaxels #B?G
within an ellipse with semi-major axis 'e and axis ratio 1/0. We
only use spaxels that meet the quality criteria for SAMI Galaxy
Survey data as described in van de Sande et al. (2017b): signal-to-
noise (S/N) > 3Å−1, fobs> FWHMinstr/2 ∼ 35 km s−1 where the
FWHM is the full-width at half-maximum, +error < 30 km s−1(Q1
from van de Sande et al. 2017b), and ferror < fobs ∗0.1+25 km s−1
(Q2 from van de Sande et al. 2017b). For 279 galaxies, 15.8 percent
of the stellar kinematic sample, the largest measured kinematic
aperture radius is less than one 'e. For these galaxies we apply
an aperture correction to _' as described in van de Sande et al.
(2017a).

Slow rotators are commonly selected using one of the following
criteria from Emsellem et al. (2007, dotted line in Fig. 3):

_'e < 0.1,

or Emsellem et al. (2011, dashed-curve in Fig. 3):

_'e < 0.31 ×
√
Ye,

or with the selection criteria from Cappellari (2016, solid line in
Fig. 3) :

_'e < 0.08 + Ye/4 with Ye < 0.4.

We present the SAMI stellar kinematic sample in Fig. 3(a). The
distribution of galaxies in the _'e -Ye space is similar to previous
studies (Emsellem et al. 2011; Cappellari 2016; Graham et al. 2018;
Falcón-Barroso et al. 2019). As noted by Falcón-Barroso et al.
(2019), in contrast to the CALIFASurvey, our sample does not reach
values above _'e > 0.8. This _' ceiling is partially caused by the
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Figure 3. Spin parameter proxy _'e versus ellipticity Ye for the SAMI Galaxy Survey sample, without (panel a) and with seeing corrections applied (panels b
using the method from Graham et al. 2018 and panel c using the method from Harborne et al. 2020a). Distributions of _'e and Ye are shown on the side and
on top of each panel. We also show the fast and slow rotator selection criteria from Emsellem et al. (2007, dotted-line), Emsellem et al. (2011, dashed-line),
and Cappellari (2016, solid-line). In panel (b) the non-regular rotators defined using kinemetry are colour coded orange, whereas regular rotators are shown
in blue. A clear bimodal distribution in _'e is only observed when the seeing correction is applied to the regular rotators within the sample (panel b), but we
argue this bimodality is artificially enhanced by the seeing correction method (see Section 3.1).

impact of atmospheric seeing (see next paragraph), but also because
of the different radius definition used to calculate _' in Equation
1. A similar effect due to seeing is seen in the MaNGA data as
presented by Fraser-McKelvie et al. (2018), but not in Graham et al.
(2018, 2019) using the same MaNGA data and _' definition, who
find that _'e reaches values close to the upper limit of 1.0, with and
without a seeing correction applied. In the _'e distribution function
(Fig. 3a) we see a small peak below _'e < 0.1, but no clear evidence
for two distinct populations is visible from our seeing-uncorrected
data.

Atmospheric seeing impacts the stellar kinematic measure-
ments by spatially smearing the line-of-sight velocity distribution,
which results in a flatter observed velocity gradient but increased
overall velocity dispersion. Hence, the seeing-impacted _'e values
will be lower compared to no-seeing measurements. An analytic
correction to account for atmospheric seeing on _'e was presented
by Graham et al. (2018). This correction was derived by simulating
the effect of seeing on kinematic galaxy models constructed with
the Jeans Anisotropic MGE modelling method (Cappellari 2008),
and takes into account the ratio of the seeing to the galaxy effective
radius and Sérsic index.

The accuracy of the analytic _' correction was tested in Har-
borne et al. (2019). Although the mean correction across a range
of morphological types works well, a residual scatter of ±0.1 _'e
remains as a function of inclination. However, the correction is
applicable only for regular rotators (Graham et al. 2018). The im-
pact of this limitation is demonstrated in Fig. 3(b). Here, we have
seeing-corrected _'e for all regular rotating galaxies (blue circles),
identified using kinemetry with 〈:51,e〉 < 0.07 (see Section 3.2
and van de Sande et al. 2017b), whereas the non-regular rotators are
left uncorrected (orange circles). From the _'e distribution shown
on the side of Panel (b), a clear bimodal distribution appears1, al-
though we argue that this separation is artificial enhanced by the
seeing correction.

An alternative seeing correction was presented by Harborne

1 We adopt the definition of bimodality as a distribution with two different
modes that appear as distinct peaks in the density distribution.

et al. (2020a) that has been derived from a suite of hydrodynamical
simulations of galaxieswith different bulge-to-total ratios.While the
method follows the idea of Graham et al. (2018), this new correction
includes an inclination term approximated from the observed ellip-
ticity. The residual scatter in _'e after applying this correction on
a test set of galaxies shows smaller residual scatter as compared to
Graham et al. (2018), and also works for all galaxy types within the
suite of simulations. Yet, true slow rotators, with complex stellar or-
bital distributions, kinematically distinct cores, and counter rotating
disks, are harder to produce in isolated-galaxy simulations. Instead,
galaxies from the eagle simulations were used which showed that
_'e can be seeing-corrected effectively for this type of galaxy with
an accuracy of Δ log_'e < 0.026 dex. Furthermore, the absolute
impact of the seeing correction on _'e for this galaxy type is small.
The Harborne et al. (2020a) seeing-corrected _'e measurements
are presented in Fig. 3(c). The low-_'e peak that was visible in
Fig. 3(b) _'e distribution is no longer as pronounced, and whilst
there may be two populations, by eye it is not clear where and how
to divide the two possible distributions.

Including a seeing correction is crucial for recovering an un-
biased _'e distribution. As galaxies with smaller angular sizes are
more severely impacted by seeing, intrinsic differences in the phys-
ical sizes of early- and late-type galaxies combined with a redshift-
dependent mass selection, can lead to a morphologically biased _'e
distribution. Therefore, in what follows we will use the seeing cor-
rection from Harborne et al. (2020a) as the default. The optimised
correction formulae for the SAMI Galaxy Survey data are presented
in Appendix A2.

However, with the seeing correction applied to all galaxies, it
is unclear whether the Emsellem et al. (2011) or Cappellari (2016)
slow rotator selection regions are still valid for our data, or how
much overlap there is between the different distributions. As the
beam smearing of galaxies with complex inner rotational velocity
and dispersion structures behaves differently from regular rotating
galaxies, the impact of seeing cannot straightforwardly be predicted
with a simple analytic formula; the _' values for complex non-
rotating galaxies might be over-corrected. This could explain why it
is harder to detect a bimodal distribution in Fig. 3(c). To solve this
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Figure 4. Seeing-corrected spin parameter proxy versus stellar mass and ellipticity. Data are colour coded by the kinematic asymmetry parameter 〈:51,e 〉
(panel a) and visual morphological type (panels b and c). Unfilled symbols indicate that 〈:51,e 〉 could not be measured within one 'e, or a conclusive visual
morphology could not be determined. Galaxies below log("★/"�) < 9.5 are not used in the main analysis, but are shown here for completeness. The overlap
of RRs and NRRs increases towards lower stellar mass. The low-mass NRRs also have higher values of _'e as compared to high mass NRRs. We show the
RRs and NRRs in the _'e -Ye space in panel (d) with the optimal selection region (black) derived from panel (e) and the slow rotator selection box from
Cappellari (2016) in grey. There is considerable overlap of RR and NRR rotators. Panel (e) shows the "Receiver Operating Characteristic Curve" and Matthews
correlation coefficient distribution from which we derive the optimal selection region. The most optimal selection region has a True Positive Rate of only 57.4
percent with a False positive rate of 5.7 percent. This suggests that the _'e -Ye space is not ideal for distinguishing between regular and non-regular rotators
derived from SAMI data.

problem, we will need to include more information than _'e and
Ye alone if we want to determine whether or not we can separate a
population of fast and slow rotators in our data.

3.2 Kinemetry: Regular and Non Regular Rotators

3.2.1 Description of the kinemetry method

We first turn to kinemetry for identifying kinematic sub-groups
as defined in Krajnović et al. (2011), because the fast and slow
rotator selection regions from Emsellem et al. (2011) and Cappel-
lari (2016) were designed to best separate regular and non-regular
galaxies. In this section we follow a similar approach. The kineme-

try method (Krajnović et al. 2006, 2008) provides an estimate of
the kinematic asymmetry, under the assumption that the velocity
field of a galaxy can be described with a simple cosine law along
ellipses: + (\) = +rot cos \, where +rot is the amplitude of the rota-
tion and \ is the azimuthal angle. Deviations from this cosine law
can then be modelled using Fourier harmonics, where the first order
decomposition :1 is equivalent to the rotational velocity and the
high-order terms (:3, :5) then describe the kinematic anomalies.
The kinematic asymmetry is defined from the amplitudes of the
Fourier harmonics :5/:1 (Krajnović et al. 2011). Our method for
measuring the kinematic asymmetry on SAMI Galaxy Survey data
is described in detail in van de Sande et al. (2017b). The kinemetry
method forms the basis of separating galaxies into regular versus
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non-regular classes. As was already noted in van de Sande et al.
(2017b), the distribution of 〈:5/:1〉 does not show a sharp tran-
sition between regular and non-regular rotators. Instead there is a
peak in the 〈:5/:1〉 distribution around ∼ 0.03 with a long tail
towards high 〈:5/:1〉 values (see also Fig. D2a).

Following Emsellem et al. (2011) we use the lower limit
〈:5/:1〉 − 〈:5/:1error〉 to separate regular and non-regular rota-
tors, taking into account that within uncertainties a galaxy that is
classed as non-regular rotator can still be a regular rotator. From
here on, we simply refer to 〈:5/:1〉 − 〈:5/:1error〉 within an aper-
ture of one effective radius as 〈:51,e〉. The divide between Regular
Rotators (RR) and Non-Regular Rotators (NRR) was set to 4 per-
cent in Krajnović et al. (2011) based on the peak and error of the
distribution, but to 2 percent in Krajnović et al. (2008). As our data
quality is different (median 〈:51,e〉=0.014 for ATLAS3D versus a
median 〈:51,e〉=0.029 here), we adjust this limit to 〈:51,e〉=0.07
which corresponds to the 84th percentile of the 〈:51,e〉 distribu-
tion. Note that in van de Sande et al. (2017b) we also adopted an
intermediate class of Quasi-Regular Rotators, but for the clarity of
directly comparing to fast and slow rotators, we do not use the QRR
terminology here.

3.2.2 Identifying Fast and Slow rotators using kinemetry as a
prior

Fig. 4(a) shows the seeing-corrected spin parameter proxy _'e us-
ing the method from Harborne et al. (2020a) versus stellar mass
log("★/"�). The data colour coded by the 〈:51,e〉 values for the
entire sample. There are two clear trends visible. First, at fixed stellar
mass, the kinematic asymmetry is higher for low _'e values. Sec-
ondly, at fixed _'e the mean kinematic asymmetry becomes higher
towards lower stellar mass, likely to be dominated by a relation-
ship in :1 (rotational velocity) versus stellar mass. To clarify these
trends, we show the RRs and NRR separately in Fig. 4(b) and 4(c)
now colour-coded by visual morphology. As expected, for galaxies
with high stellar masses (log("★/"�) > 10.75), NRRs have the
lowest values of _'e . However, towards lower stellar mass NRRs
demonstrate a large range in _'e , even with our strict definition of
non-regularity (〈:51,e〉 > 0.07). We note that the relatively high-
spin NRRs (_'e > 0.4) roughly fall into two categories: galaxies
with late-type spiral morphology with kinematic features in the ve-
locity maps caused by spiral arms or bars, and galaxies with edge-on
morphology and low spatial coverage.

The increased scatter in _'e towards low stellar masses is
caused by a combination of lower (/# and a decrease in the overall
rotational velocities (:1) of these galaxies. Because 〈:51,e〉 is nor-
malised by :1, slower rotating galaxies that follow a perfect cosine
rotation will have higher 〈:51,e〉 even if uncertainties on + mea-
surements are the same. As galaxies have lower angular momentum
towards low stellar mass, higher values of 〈:51,e〉 are expected.
Furthermore, galaxies towards low stellar mass have lower typical
S/N values, thus higher+ uncertainties which also increases 〈:51,e〉
towards low stellar mass. Thus the higher scatter in 〈:51,e〉 at low
stellar mass is most likely caused by observational effects.

The larger scatter between 〈:51,e〉 and _'e leads to consid-
erable overlap between the RR and NRR populations in the _'e -
log("★/"�) diagram. By using a single _'e cut-off value to sep-
arate regular and non-regular rotators we will not only cause a bias
with stellar mass, but also create a large number of false positives
and false negatives, if we assume that 〈:51,e〉 is the perfect classifier.

The _'e versus ellipticity Ye diagram, as presented in Fig. 4(d),
is now commonly used to separate fast and slow rotators, where the

Table 1. Confusion matrix for the condition of NRR versus RR using the
SR versus FR test.

NRR RR

SR True Positive False Positive

FR False Negative True Negative

empirical separation between fast and slow rotators is motivated by
the location of the regular and non-regular rotators. However, from
Fig. 4(d) it is immediately clear that themost-current selection crite-
rion from Cappellari (2016) (grey lines) and the previous selection
criteria (Emsellem et al. 2007, 2011, not shown), are unsuccessful
in separating RRs and NRRs within our seeing-corrected SAMI
sample.

In order to quantify the "success" of the SR selection region
for separating RRs and NRRs, we will treat "non-regularity" as a
condition that a galaxy can have, while using the _'e -Ye diagram
as the diagnostic to identify this condition. By adopting this clas-
sification, we can calculate statistical measures of performance of
this binary test, such as the sensitivity and specificity. To do so,
we first construct a confusion matrix (Table 1) where we determine
the True Positives (TP), True Negatives (TN), False Positives (FP),
and False Negatives (FN). A true positive is where a galaxy has the
condition of NRR and is also classified (i.e., tested positive) as an
SR, whereas a True Negative is an RR that has been classified as an
FR.

There are several statistical measures that quantify the rele-
vance of our statistical test. Here, we will use an "Receiver Operat-
ing Characteristic Curve" analysis to quantify how well our test per-
forms (see for example Fawcett 2006). Specifically, we will use the
sensitivity or true positive rate ()%'), the fall-out or False Positive
Rate (�%'), the Positive Prediction Value (%%+), and Matthews
correlation coefficient ("��; Matthews 1975):

)%' =
)%

%
=

)%

)% + �# (2)

�%' =
�%

#
=

�%

�% + )# (3)

%%+ =
)%

)% + �% (4)

"�� =
)% × )# − �% × �#√

()% + �%) ()% + �#) ()# + �%) ()# + �#)
(5)

Instead of calculating a single set of numbers for the Cappellari
(2016) FR/SR selection, it will be more insightful to try a variety
of selection criteria to determine the optimal selection region. We
first explored the full range of selection boxes with different starting
and end positions (i.e., with different slopes) in both _'e and and
Ye but the retrieved optimal selection function did not have signifi-
cantly improved MCC values as compared to the adopted selection
function below (there was one exception that we will highlight in
Section 3.4). Instead we choose a varying selection region similar
to Cappellari (2016) as this was well-motivated for higher-S/N and
higher-spatial resolution data (e.g., see Appendix D1):

_'e = _'start + Ye/4, with Ye < 0.35 +
_'start
1.538

. (6)
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We define the optimal selection when the MCC reaches its highest
value, which is a trade off between the number of true and false
positives and negatives. We note that there are several other optimi-
sation parameters, such as the "Youden’s J statistic", the Accuracy,
or the F1 score, but they all returned similar results as compared to
the MCC.

We show the True Positive Rate versus the False Positive Rate,
also known as the ROC-curve, in Fig. 4(e), with an additional inset
panel that shows the MCC as a function of _'start. A completely
random test would result in data residing on the one-to-one line. We
test 200 different selection regions, with _'start ranging from 0-1.
With increasing values of _'start we find an increase in the TPR
but also in the FPR. According to the MCC parameter, the optimal
selection region has _'start = 0.16 shown as the black line in
Fig. 4(d). This value is significantly higher than the _'start = 0.08
from Cappellari (2016). More importantly, the optimal selection
region only has a TPR of 57.4 percent with a FPR of 5.7 percent,
and a Positive Prediction Value of 65.8 percent.

Thus, we conclude that using the _'e -Ye diagram to sepa-
rate regular and non-regular rotators is only moderately successful
when presented with seeing-dominated data. We emphasise that the
kinemetry method was designed for higher quality data than pre-
sented here, hence we do not suggest that these results should be
interpreted a "failure" of the method. Instead, it is a motivation to
explore an alternative kinematic identifier that is better suited for
poorer-quality data. This will be explored in the next section.

3.3 Visual Kinematic Classification: Obvious versus
Non-Obvious Rotators

3.3.1 A New Visual Kinematic Classification Scheme

In the previous section we demonstrated that there is no clean sep-
aration of regular and non-regular rotators in the _'e -Ye plane or
the _'e -log("★/"�) plane. Nonetheless, when the data quality is
good enough, kinemetry provides a quantitative measure of what
we visually interpret as kinematic deviations from a regular rotating
velocity profile (e.g., see Appendix D1). Given that the large vari-
ety of the kinematic types as presented by Krajnović et al. (2011)
are also easily identified by eye in the ATLAS3D velocity maps,
we will now investigate whether a visual kinematic classification of
SAMI galaxies offers a clearer separation of galaxies with different
kinematic structures.

Visual classification of galaxy morphology, however, is sub-
jective from observer to observer and is susceptible to the quality
and spatial resolution of the imaging data. Nonetheless, a well-
developed framework exists that allows classifiers to determine a
galaxy’s morphological type with several levels of refinement. Un-
fortunately, such a clear and well-defined framework does not exist
for classifying kinematic maps of galaxies.

Krajnović et al. (2011) and Cappellari (2016) offer a frame-
work for identifying kinematic features within early-types such a
"Kinematically Distinct Core" or "Counter-Rotating Core", yet the
classification of when a velocity field is no longer regular rotat-
ing is highly subjective. While the origin of this visual classifica-
tion scheme is based on the quantitative kinemetry measurements,
comparing flux-weighted measurement within one 'e and visual
classifications are not always straight forward (see Section 5.1 for
examples). Furthermore, the different subclasses (No Features, 2
Maxima, Kinematic Twist) for regular rotators are no longer present
in Cappellari (2016, fig. 4) , who present four classes of non-regular
velocity fields but only one for regular velocity. However, the main

issue with the current kinematic classification scheme is that it is not
well adapted for data with different quality. When the S/N decreases
and the spatial resolution becomes lower, one would be tempted to
classify all galaxies as non-regular rotators if the velocity field ap-
pears noisier than the high-quality example galaxies for which the
visual classification was designed.

An initial attempt by three of the authors to classify 50 SAMI
galaxies with _'e < 0.35 into regular versus non-regular rotators
led to an identical classification of only 22 galaxies (44 percent).
While kinematic features in the core, such as KDCs, are easily
classified in nearby galaxies with well-resolved spatial data, they
are easily missed in surveys such as SAMI and MaNGA where
there is a trade off between multiplexing, spatial resolution, and
spatial extent. Furthermore, the regular and non-regular classes that
are based on the luminosity weighted 〈:51,e〉 parameter do not
directly translate into a visual classification. As such, we found that
the three classifiers had different interpretations of the visual regular
versus non-regular classification scheme. This implies that we need
to devise a more easily interpretable visual kinematic classification
scheme that allows for different levels of data quality.

We propose a kinematic visual classification scheme defined
as follows. First, we divide the population into "Obvious Rotators"
(ORs) and "Non-Obvious Rotators" (NORs). The adopted language
is purposely vague to allow for some freedomof interpretation as the
classification is qualitative, not quantitative.Whilst the velocity field
does not necessarily have to be regular for a galaxy to be classified
as an obvious rotator, opposite ends of the velocity field should
demonstrate reversed rotation. For the SAMI galaxy survey stellar
kinematic data, we add one level of refinement. After classifying the
kinematic map into OR or NOR, we check whether the galaxy has
an inner kinematic feature ("With Feature"; WF) or not. Lastly, we
include an additional type for spiral and/or strongly barred galaxies
that are close to face-on (FO-Sp), thus showing no obvious rotation.
With improved data quality, this classification scheme can be further
refined by adding an extra level to identify the type of kinematic
feature (e.g, kinematically distinct core, 2M, etc., from Krajnović
et al. 2011).

Five example maps of the different visual kinematic types are
presented in Fig. 5. For each galaxy we show a velocity map with
a range set by the average velocity dispersion, a velocity map with
auto-scaling, as well as the best-available 6A8 colour image derived
from VST-KiDS (de Jong et al. 2017) or Subaru-Hyper Suprime
Camera DR1 imaging (Aihara et al. 2018). The first velocity map
with fe-scaling was used to classify galaxies into NORs or ORs,
whereas the auto-scaled velocity map is better adjusted for identify-
ing inner kinematic features. The choice for using a velocity range
set by the velocity dispersion was motivated by the dependence of
the maximum rotational velocity as a function of stellar mass, i.e.,
the Baryonic Tully-Fisher relation. We also wanted to incorporate
the velocity dispersion into the visual classification such that with
increasing velocity dispersion the rotational velocity has to become
more pronounced in order for a galaxy to be classified as an obvious
rotator.

Using similar maps as shown in Fig. 5, seven members of the
SAMI Galaxy Survey team visually classified ∼600 kinematic maps
of galaxies with _'e < 0.35. We chose to visually classify only a
selected sample of galaxies, because no NORs were identified at
_'e > 0.35 in a test set. And because kinematic visual classification
is time consuming process we only selected galaxies in the _'e
region where a mix of ORs and NORs was expected to reduce the
total number of galaxies

Following a similar approach as outlined in Cortese et al.
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Figure 5. Example velocity maps and 6A8 VST-KiDS or Subaru-HSC colour images for Non-Obvious Rotators (left) versus Obvious Rotators (right), and Face-
on Spirals (bottom) as used in the SAMI Galaxy Survey kinematic visual classification. The white-dashed circle on the images shows the SAMI field-of-view,
whereas the blue- or red-dashed ellipse on the velocity maps respectively shows 1'e or 0.5'e. For each galaxy, the first velocity map is used to classify galaxies
into NORs and ORs. Here, the velocity scale is derived from the velocity dispersion ±f4 . This integrates the velocity dispersion into the visual classification
such that with increasing velocity dispersion the rotational velocity has to become more pronounced in order for a galaxy to be classified as an obvious rotator.
The auto-scaled velocity map is included to aid classifiers in identifying kinematic substructures (WF).

(2016), after all votes were combined, the kinematic type with at
least 5/7 votes were chosen (66.7 percent, 399/598). When no abso-
lute majority was found, ORs and ORs-WF, or NORs and NORS-
WF, were combined into an intermediate type. If 5/7 votes then
agreed, the galaxy was classified as the intermediate type (23.2 per-
cent, 139/598). For the remaining cases (∼ 10 percent, 58/598) the
classifications of the two most average classifiers were compared
and if those agreed that type was chosen (6.2 percent, 37/598).
Otherwise, we checked whether a weak majority (4/7) was reached
(3.5 percent, 21/598). Only two galaxies in our sample remained
unclassified under this scheme.

The results of the kinematic visual classification are presented
in the _'e -log("★/"�) plane (Fig. 6(a)-(c)). Interestingly, we find
that the distribution of ORs and ORs-WF extend to very low values
of _'e . While this is expected for face-on spirals, we also find ORs-
WFs galaxies with low _'e that are classified morphologically as
Elliptical and S0s. For NORs, as expected there is an increase in
their fraction towards higher stellar mass. The average _'e values of
NORs also decrease with increasing stellar mass. We find that low-
mass (log("★/"�) < 10) NORs are nearly all morphologically
classified as late-spiral or irregular. In Fig. 6(d) we investigate where
ORs and NORs reside in the _'e -Ye plane. The NORs have mostly
low ellipticity values, and beyond Ye > 0.4 we only find a handful of
NORs. A large fraction of the ORs at low spin-parameter (_'e<0.2)
are classified having kinematic features, and similarly for _'e <
0.4 and Ye > 0.4, which strengthens the argument for setting an
ellipticity limit of Ye < 0.4 to select galaxies with actual slow
rotation rather than low _'e values due to counter-rotating disks.

Table 2. Confusion matrix for the condition of NOR versus OR using the
SR versus FR test.

NOR OR

SR True Positive False Positive

FR False Negative True Negative

3.3.2 Identifying Fast and Slow rotators using Visual Kinematic
Morphology as a Prior

Similar to the test we did for kinemetry, we will now treat "Non-
Obvious Rotation" as a condition that a galaxy can have, while
again using the _'e -Ye diagram as the diagnostic to identify this
condition. The confusion matrix is given in Table 2. We then use
Equation 6 to select SRs and FRs for an ensemble of selecting
regions and calculate the TPR (Equation 2), the FPR (Equation 3),
and the MCC (Equation 5). The optimal selection is defined by the
highest MCC value.
The TPR versus FPR, and the MCC distribution are shown in
Fig. 6(e). According to the MCC parameter, the optimal selection
region has _'start = 0.12 shown as the black line in Fig. 6(d), which
is close to the _'start = 0.08 from Cappellari (2016). The optimal
selection region only has a TPR of 83.1 percent with a small FPR
of 3.6 percent, and a PPV of 67.6 percent. If we were to accept a
higher FPR of 20 percent, which is reached at _'start = 0.27, then
we obtain an impressive TPR of 98.7 percent, but with an unac-
ceptably low PPV of 30.9 percent. Overall, we conclude that there
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Figure 6. Seeing-corrected spin parameter proxy versus stellar mass and ellipticity. Data are colour coded by the kinematic visual classification (panel a) and
visual morphological type (panels b and c). Unfilled symbols indicate that a conclusive visual morphology could not be determined. The overlap between the
obvious and non-obvious rotators is considerably less as compared to the results using kinemetry. With increasing stellar mass the median _'e of NORs
decreases. We show the ORs and NORs in the _'e -Ye space in panel (d) with the optimal selection region (black) and the SR selection box from Cappellari
(2016) in grey. There is mild overlap of ORs and NORS, but panel (e) indicates a relatively clean selection of NORS can be made using the black selection
box.

is a good success of selecting Non-Obvious Rotators and Obvious
Rotators using the _'e -Ye diagram. Nonetheless, as the _'e -Ye di-
agram only shows the average rotational properties within 'e it
cannot replace the spatial information obtained through the process
of visual classification.

3.4 Using Bayesian Mixture Models for Identifying Different
Kinematic Families

3.4.1 Description of the Bayesian Mixture Model

Up to this point, we have been working with the assumption that
multiple kinematic populations of galaxies exist. Using kinemetry
we separated galaxies into regular and non-regular and for the visual
kinematic classification we split galaxies into obvious and non-
obvious rotation. Both analyses indicate that the various kinematic
classes exist across the full range in stellar masses, with an increased

fraction of NRRs and NORs towards high stellar mass. Nonetheless,
the question of whether or not a bimodal distribution with two
distinct peaks exists has not been answered by this analysis. The
〈:51,e〉 distribution from kinemetry only reveals a highly skewed
distribution, whereas the visual kinematic classification could be
tracing two ends of a continuous distribution.

Here, we are interested in analysing the _'e distribution as a
function of stellar mass without forcing two distinct populations,
or assuming where these populations should reside in the _'e -
log("★/"�) plane. To do so, we analyse our data using a Bayesian
mixture modelling framework2. The main assumption we make is
that the _'e distribution of galaxies can be well approximated by

2 Inspired by Taylor et al. (2015) who analyse "blue" and "red" galaxies as
two naturally overlapping populations using an MCMC analysis.
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a beta distribution, where the probability density function (PDF) is
given by:

5 (G, U, V) = G
U−1 (1 − G)V−1
B(U, V) (7)

with B(U, V) defined using the Gamma function Γ:

B(U, V) = Γ(U)Γ(V)
Γ(U + V) (8)

The beta distribution has the property of only being defined on the
unit interval, which makes it ideal to describe values of _' that are
also constrained to lie between 0 and 1. However, as the maxima
and minima of the observed distributions are not perfectly 0 and 1,
we rescale the _' values in the following way:

_', rescaled =
_' −min(_R)

max(_R) −min(_R)
. (9)

To model the locations of galaxies in the _'e -log("★/"�) plane,
we use a linear combination of two beta functions at each value
of stellar mass (which we label 1 and 2). However, the proportion
of galaxies which are drawn from each beta distribution at a given
stellar mass is not fixed. We allow the "mixture probability" ? to
vary smoothly as a function of stellar mass, which captures the
well-known dependence of kinematic morphology and mass (e.g.,
Emsellem et al. 2011; Brough et al. 2017; Veale et al. 2017; van de
Sande et al. 2017a; Green et al. 2018; Graham et al. 2018).

Note that the expected relation of both populations with stellar
mass is also the primary reason for not using the _'e -Ye diagram to
fit the data. Even though inclination has a significant impact on the
observed _'e values that could be partially accounted for by using
ellipticity instead of mass, we argue that without an inclination
correction we only get an increase in the scatter and overlap of both
_'e distributions. While we could attempt to correct for inclination,
this parameter is poorly constrained for galaxies below _'e < 0.2.
Only correcting a subset of the data could lead to a bimodality by
construction (see Section 3.1), which we want to avoid here. We
further investigate the impact of inclination in Appendix B.

At this point, we also apply a volume correction to our cluster
sample. The complete volume correction analysis will be presented
by van de Sande et al. (in preparation), but we provide a short de-
scription here. The SAMI targets are drawn from the volume-limited
GAMA survey with high completeness (∼ 90 percent). However,
the GAMA regions lack high over-density regions with halo mass
greater than log("halo/"�) ∼ 14.5. For that reason the SAMI
Galaxy Survey targeted an additional 8 cluster regions to fill this
density gap. Nonetheless, the probability of finding an extremely
massive cluster such as Abell 85 (the most massive cluster in the
SAMI cluster sample) within the GAMA volume is less than one.
Hence, a volume correction needs to be applied.

We first calculate the total survey volume, using the stepped
series of stellar mass limits as a function of redshift from which the
SAMI Galaxy Survey targets were selected (see Bryant et al. 2015).
For each volume, we calculate the predicted halo mass function
from Angulo et al. (2012) using HMFcalc: An Online Tool for
Calculating DarkMatter Halo Mass Functions (Murray et al. 2013).
With that halo mass function, we can then obtain a probability
of finding a cluster galaxy within the SAMI-GAMA volume. For
example, we find that the probability of observing a galaxy in the
mostmassive clusterAbell 85 is∼ 1/38. To take this over-abundance
of cluster galaxies into account, we randomly draw each galaxy in

the full survey - with replacement- using an oversampling of 38
multiplied by a galaxy’s volume correction. In practice, a galaxy in
themostmassive cluster (Abell 85)will be drawnonly once,whereas
a galaxy in the GAMA region will be drawn 38 times. For each
draw, we add a random number to each data point derived from the
1f measurement uncertainty on _'e and a typical 1f stellar mass
uncertainty of 0.1dex. The total volume-corrected dataset consists
of 53,587 data points.

We then use this volume-corrected sample to fit the _'e distri-
bution as a function of stellar mass. The shape parameters of both
beta functions (U1, V1 and U2, V2 respectively) are defined to be lin-
ear functions of stellar mass. This allows the two beta distributions
to vary their width and location in the _'-log("★/"�) plane to
match the observational data. Note that the model has the freedom
to let one set of parameters have zero contribution if the data do not
motivate two populations. A full mathematical description of the
model including priors is given in Appendix C.

We fit this model using the python interface to the probabilis-
tic programming language Stan (Carpenter et al. 2017). Stan uses
a modified version of the Hamiltonian Monte Carlo algorithm (Du-
ane et al. 1987; Hoffman & Gelman 2014) to sample the model’s
posterior probability distribution and perform full Bayesian infer-
ence of the parameters. During the fitting, we run 4 separate chains
for 500 warm-up steps and 500 sampling steps each. The warm-up
steps are then discarded. We ensure that there are no divergent tran-
sitions during the sampling and that the Gelman-Rubin convergence
diagnostic '̂ (Gelman & Rubin 1992) for each parameter is within
normal values (1 < '̂ < 1.1). Note that no binning in log("★/"�)
or _'e is applied in the fitting process; each data-point is treated
independently.

3.4.2 Probabilistic Fast and Slow Rotators

The key results from this analysis are shown in Fig. 7. We identify
two clear distributions within the _'e -log("★/"�) diagram with
moderate overlap. In Fig. 7(a), the blue high _' distribution, which
is consistent with the location of galaxies traditionally called fast
rotators, dominates at low and intermediate stellar masses. Above
log("★/"�) > 10.5 the contribution from a second population at
low _'e as shown in red, consistent with traditional slow rotators
and becomes more and more dominant towards high stellar mass.
While these two populations occupy the exact regions where we
expect fast and slow rotators to reside, we want to avoid using the
exact same terminology when the process of identifying these two
populations is very different from previous studies. Instead, we will
refer to these distributions as probabilistic fast and slow rotators
(pFRs and pSRs).

In Fig. 7(b), we find that the probability of a galaxy being
drawn from the pSR distribution rapidly increases as a function of
stellar mass, particularly above log("★/"�) > 11, in agreement
with previous studies (e.g., Emsellem et al. 2011; Brough et al.
2017; Veale et al. 2017; van de Sande et al. 2017a; Green et al.
2018; Graham et al. 2018). However, the model predictions be-
comes increasingly uncertain above log("★/"�)>11.4 where the
number of observed SAMI Galaxy Survey galaxies rapidly drops.
The _'e distribution summed over the entire mass range is shown in
Fig. 7(c). There is a minor offset of the peak of the pFR distribution
as compared to the peak of the data, but the peak of the pSR is well
matched to the data.

In Fig. 8 we split the sample into four equal bins of stellar mass
to investigate this offset further. In particular, we are interested in
determining whether or not the main assumption that the _'e distri-
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Figure 7. Bayesian mixture model analysis to identify different kinematic populations. In panel (a), we show the seeing-corrected spin parameter proxy versus
stellar mass, where the blue and red density contours show the amplitude of the beta distributions that we fit to the volume-corrected data. Note that we only
show 5000 randomly drawn galaxies here. The "mixture probability" (i.e., the probability of being drawn from the second beta distribution describing the
"slow" rotators) as a function of stellar mass is given in panel (b), where the black lines show 2000 realisations of the mixture model and the red line shows the
average. Panel (c) shows the total distribution in _'e summed over all stellar masses for the data (black), together with 2000 realisations of the mixture model
in orange. At low stellar mass (log("★/"�) < 10.5) the probability of finding galaxies that belong to a second low-_'e population goes to zero, whereas
at high stellar mass, the probability for a second low-_'e population is very high. We note that the high _'e Beta distribution shows a small deviation from
the observed data, which is further explored in Fig. 7). Nonetheless, the Bayesian mixture model analysis provides the most principled separation of the two
distributions.

bution can be described by a beta function is valid. Furthermore, we
separate the late and early-type distributions because we expect the
behaviour of these populations to be different. Indeed, for late-types
only, we find that the _'e distribution can be described by a single
beta function associated with the pFRs, with minimal contribution
of a second beta distribution. However, for early-type galaxies, a
second dominant peak appears at log("★/"�) > 10.5, which is
also well fitted by a beta distribution.

In the combined sample (Fig. 8 bottom row), we see how the
relative contributions of early-types and late-types as a function of
stellar mass impact the _'e distribution. Below log("★/"�) <
10.5 the late-type population dominates, which is reflected by the
strong peak at _'e ∼ 0.6, whereas towards higher stellar mass the
contribution from early-type galaxies becomes more dominant. Be-
tween 10.5 < log("★/"�) < 11, we find the combined late-type
pFR and early-type pFR distribution, which have roughly equal
numbers of galaxies, is also well described by a single beta distri-
bution. This is perhaps surprising as the individual late-type and
early-type pFR distributions are different in shape with peak values
that are offset by ∼ 0.2 in _'e . While this does not exclude that the
two populations are kinematically different, it validates the choice of
a single beta distribution for the combined early-type and late-type
pFR population. We also note that the peak and width of the pSR
distributions are identical when analysed as part of the full sample
or within the early-type sample. We emphasize that this is not by
construction, but an outcome of our mixture model analysis.

Nonetheless, while in three out of four stellar mass bins we find
a relatively good fit of our model to the data, in the bin with mass
interval 10.0 < log("★/"�) < 10.5 we see a poorer fit to the data.
The discrepancy between the model and the data could be caused
by a relatively high broad peak in the distribution at _'e ∼ 0.6 for
late-types, or because we enforce a smooth transition of the beta
distributions as a function of stellar mass using a linear relation.
Instead, we attribute the poor fit in this mass regime to the lower
peak around _'e ∼ 0.2. The larger abundance of galaxies at these

low _'e values could be explained by a population of galaxies that
we previously identified as NOR-WF or OR-WF (see Section 3.3).
These galaxiesmight have outer kinematic structures consistentwith
either the pSR or pFR population, but the inner kinematics offset
the _'e measurements from their main distribution. Removing these
galaxies from the sample indeed results in a better visual fit, but as
our goal here is to use only the spin parameter proxy and stellar mass
without secondary identifiers to clean or pre-select our sample, we
did not attempt to improve this further.

To summarise, using a Bayesian mixture model analysis we
have demonstrated that two beta distributions are required to de-
scribe the observed _'e distribution as a function of stellar mass.
For early-type galaxies, the location of pFR peak has a lower _'e
value as compared to pFR late-type galaxies, but the locations of the
pFR and pSR peaks do not change with stellar mass. The amplitude
of pSR distribution rapidly increases with stellar mass, but the peak
and width remain constant. When we analyse the full SAMI Galaxy
Survey sample, we find that the data are well-described by two beta
distributions, but because the relative fraction of late and early-type
galaxies changes as a function of stellar mass, we also find that
the width and peak of the pFR distributions change moderately.
These results are consistent with the findings of Guo et al. (2020),
who show that in the local Universe, above log("★/"�) > 10.5,
both late- and early-type populations become important in the to-
tal stellar mass budget, whereas below log("★/"�) > 10.5 only
one population is needed to reproduce the stellar mass function of
galaxies.

3.4.3 Identifying Fast and Slow rotators using Bayesian Mixture
Models as a Prior

We now use the Bayesian mixture model to identify which galaxies
are most likely pFRs and pSRs. In Fig. 9(a) we show the SR prob-
ability contours, where ?(SR) = %��SR / (%��SR + %��FR).
We define a galaxy as a pSR when the ?(SR) is higher than 50 per-

MNRAS 000, 1–30 (2020)



Towards an Optimal Kinematic Classification 13

Late Types Only

9.5<log(M* / MO •
)<10       (a) 

0.0 0.2 0.4 0.6 0.8
 λRe

     

0

500

1000

1500

N

 

 

 

 

10<log(M* / MO •
)<10.5.    (b)

0.0 0.2 0.4 0.6 0.8
 λRe

     

 

 

 

 

 

 

 

 

10.5<log(M* / MO •
)<11     (c)

0.0 0.2 0.4 0.6 0.8
 λRe

     

 

 

 

 

 

 

 

 

11<log(M* / MO •
)<11.5     (d)

0.0 0.2 0.4 0.6 0.8
 λRe

     

 

 

 

 

 

 

 

 

Early Types Only

9.5<log(M* / MO •
)<10       (e) 

0.0 0.2 0.4 0.6 0.8
 λRe

     

0

500

1000

1500

N

 

 

 

 

10<log(M* / MO •
)<10.5.    (f)

0.0 0.2 0.4 0.6 0.8
 λRe

     

 

 

 

 

 

 

 

 

10.5<log(M* / MO •
)<11     (g)

0.0 0.2 0.4 0.6 0.8
 λRe

     

 

 

 

 

 

 

 

 

11<log(M* / MO •
)<11.5     (h)

0.0 0.2 0.4 0.6 0.8
 λRe

     

 

 

 

 

 

 

 

 

All Galaxies

9.5<log(M* / MO •
)<10       (i) 

0.0 0.2 0.4 0.6 0.8
 λRe

     

0

500

1000

1500

N

 

 

 

 

10<log(M* / MO •
)<10.5.    (j)

0.0 0.2 0.4 0.6 0.8
 λRe

     

 

 

 

 

 

 

 

 

10.5<log(M* / MO •
)<11     (k)

0.0 0.2 0.4 0.6 0.8
 λRe

     

 

 

 

 

 

 

 

 

11<log(M* / MO •
)<11.5     (l)

0.0 0.2 0.4 0.6 0.8
 λRe

     

 

 

 

 

 

 

 

 

Figure 8. Distribution of the seeing-corrected _'e from the volume-corrected sample in four stellar mass bins, split by visual morphology into late-type
galaxies (top row), early-type galaxies (middle-row), and the full sample (bottom-row). The observed distribution is shown in grey, the best-fitting mixture
model in black with the two beta distributions shown separately on top in blue and red. We emphasise that this mixture model has been fit to all galaxies in our
sample simultaneously, and has not been fit to the binned data shown here. Late-type galaxies are well described by a single beta distribution, with a near zero
contribution from a second distribution. For late-type galaxies, above stellar mass log("★/"�) > 10, we find an increasingly dominant population of pSRs
at low-_'e . The position and amplitude of this second distribution remains the same when we fit the entire population versus early-types only. In general we
find a good fit to the data at low and high-stellar masses (column 1, 3, and 4), but between 10.0 < log("★/"�) < 10.5 (second column) the shape of the
high-_'e beta distribution does not match the data as well as for other stellar mass bins.

Table 3. Confusion matrix for the condition of pSR versus pFR using the
SR versus FR test.

pSR pFR

SR True Positive False Positive

FR False Negative True Negative

cent. Note that this selection does not take into account ellipticity
or visual morphology. For that reason, counter rotating disks that

are often excluded using an ellipticity cutoff, or face-on spirals can
still be selected as pSR when they are clearly different in structure
and kinematics as compared to massive-triaxial ellipticals. We find
that the fraction of pSRs strongly increases with stellar mass, which
was already demonstrated in Fig. 7. But, the pSR contours are more
tightly packed in the _'e direction, whereas the stellar mass range
from the 20th to 80th probability covers nearly a dex in stellar mass.

In Figs 9(b) and (c) we show the mass normalised FR and
SR PDFs. The contours indicate the 68 and 95 percentiles or how
likely we are to find a pFR or pSR in that region. We overlay the
SAMI Galaxy Survey data to identify low probability pFR and pSR
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Figure 9. Seeing-corrected spin parameter proxy versus stellar mass and ellipticity. We present the probabilistic Fast and Slow rotators (pFRs and pSRs) as
blue and red coloured symbols in panel (a), with contours marking the probability for a galaxy to be a slow rotator (p(SR)=50% black, and from light to dark
red as 20%, 40%, 60%, 80%). Panels (b) and (c) show the fast and slow rotator PDFs normalised in each mass bin, with contours enclosing 68 and 95 percent
of the PDF, and indicates the probability of finding a pSR or pFR if the mass-function is flat. The SAMI classified pFRs and pSRs are shown in the _'e -Ye
space in panel (d) where the optimal selection region from our ROC analysis is shown in black together with the Cappellari (2016) SR selection box in grey.
Because we select pFRs and pSRs from the p(SR)=50% contour in the _'e -log("★/"�) , the small increase of the _'e limit with stellar mass results in some
minor contamination in the _'e -Ye space. Nonetheless, panel (e) indicates an extremely high True Positive Rate with low False Positive Rate, but this is partly
by construction.

galaxies. For example, in Fig. 9(b) below log("★/"�) < 10.5
there are a number of pFR galaxies that lie below the 95 percentile
contours. In our visual kinematic classification analysis (Fig. 6) we
already found that this region is predominately occupied byOR-WF,
whereas the majority of OR have no such feature. Similarly, we find
low-mass pSRs that are outside the 95 percentile. However, whereas
the PDFs are normalised as a function of stellar mass, the SAMI
observed mass function peaks around log("★/"�) ∼ 10.5. It is
therefore no surprise that we findmore pSR at log("★/"�) < 10.5
than the PDF from a flat stellar mass distribution suggests.

Similar to the test we performed for kinemetry and the visual
kinematic classification, we will now treat pFR versus pSR as a con-
dition that a galaxy can have, with _'e -Ye diagram as the diagnostic
to identify this condition. The confusion matrix is given in Table
3. In Fig. 9(d) we investigate where pFRs and pSRs reside in the

_'e -Ye plane. Unsurprisingly, there is a clear separation between
both classes because the pFR and pSR classifications come directly
from the _'e -log("★/"�) probability cutoffs. Therefore, we are
mainly gauging how much overlap of the pFR and pSR distribution
there is when swapping log("★/"�) for Ye. While this may seem
somewhat artificial, we note that both kinemetry and the kinematic
visual classification are also based on the kinematic data. Thus, all
kinematic identifiers have some degree of interdependence.

We find no dependence on the location of pSR with respect
to the ellipticity (Fig. 9d), and in particular towards low Ye, we do
not detect a decline in the _'e values of pSR. This result is similar
to the NOR category defined from visual classification. To quantify
this trend, we explore different selection boxes with varying slopes,
start and end positions in both _'e and Ye. Indeed, the optimal
selection function has a nearly flat slope starting at _'e=0.14 and
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extends out Ye=0.5, with anMCC value that is higher than the MCC
value from the default selection region from Eq. 6 (0.890 vs. 0.865,
respectively).

In Fig. 9(e) we show the TPR versus FPR of our test as well
as the MCC distribution for the default selection region region
from Eq. 6. The optimal selection only has _'start value of 0.12,
with a TPR of 90.4 percent with a small FPR of 1.9 percent, and
a PPV of 83.0 percent. Overall, there is an excellent agreement
between the selection of probabilistic fast and slow rotators using
the _'e -Ye diagram, although we re-emphasise that this is mostly
by construction.

4 DIFFERENT KINEMATIC DISTRIBUTIONS IN
COSMOLOGICAL HYDRODYNAMICAL
SIMULATIONS

Cosmological hydrodynamical simulations offer great insight into
the formation and evolution of galaxies from high-redshift (I ∼ 50)
to the present-day (I = 0). By simultaneously comparing structural,
dynamical, and stellar population measurements from simulations
and observations, van de Sande et al. (2019) demonstrate that re-
cent large cosmological simulations are now capable of reproducing
many of the known galaxy relations. However, the comparison with
IFS measurements also showed that some fundamental parameters
are not well reproduced, and that areas of discrepancy and agree-
ment vary between the different simulations. Nonetheless, these
simulations are useful to interpret the properties of different galaxy
populations across time and different environments (Teklu et al.
2015; Dubois et al. 2016; Welker et al. 2017; Remus et al. 2017;
Penoyre et al. 2017; Choi & Yi 2017; Kaviraj et al. 2017; Choi et al.
2018; Lagos et al. 2018a,b; Schulze et al. 2018; Martin et al. 2018;
Pillepich et al. 2019; Walo-Martín et al. 2020; Pulsoni et al. 2020;
Schulze et al. 2020).

To assess whether observational selection criteria can be suc-
cessfully applied to data from simulations to separate fast and
slow rotators, we will now repeat the mixture model analysis on
IFS mock-observations from cosmological hydrodynamical sim-
ulations. We use the data as presented by van de Sande et al.
(2019) where we used the eagle, horizon-agn, and Magneticum
Pathfinder simulations. All simulations model key physical pro-
cesses of galaxy formation, including gas cooling, star formation,
feedback from stars and from supermassive black holes, although
each simulation adopts different philosophies for calibrating to and
reproducing observational results. The details of the simulations
and mock-observations are summarised below.

4.1 EAGLE and Hydrangea

From the publicly available eagle project (Evolution and Assem-
bly of GaLaxies and their Environments; Schaye et al. 2015; Crain
et al. 2015; McAlpine et al. 2016) data, we use the reference model
Ref-L100N1504 that has a volume of (100 Mpc)3 co-moving. We
combine eagle with hydrangea that consists of 24 cosmologi-
cal zoom-in simulations of galaxy clusters and their environments
(Bahé et al. 2017) to provide a better environmental match to the
observed SAMI Galaxy Survey. hydrangea is part of the larger
Cluster-eagle project (Barnes et al. 2017). Cluster-eagle is similar
to eagle but with different parameter values for the active galactic
nuclei (AGN) feedbackmodel, tomake itmore efficient. Both eagle
and hydrangea adopt the Planck Collaboration XVI (2014) cos-
mological parameters (Ωm=0.307,ΩΛ = 0.693, �0 = 67.77 km s−1

Mpc−1). Each dark matter particle has a mass of 9.7×106 M� , and
the initial gas particle mass is 1.81×106 M� . The typical mass of a
stellar particle is similar to the gas particle mass. In what follows, we
will refer to the joined eagle and hydrangea sample as eagle+.

4.2 Horizon-AGN Simulations

The second set of cosmological hydrodynamic simulations is
horizon-agn with the details presented by Dubois et al. (2014).
Here, we use the simulation box with a volume of (142 Mpc)3
co-moving with an adopted cosmology that is compatible with the
Wilkinson Microwave Anisotropy Probe 7 cosmology (Ωm=0.272,
ΩΛ = 0.728, �0 = 70.4 km s−1 Mpc−1; Komatsu et al. 2011).
horizon-agn uses a grid to compute the hydrodynamics, employ-
ing adaptively refinement to the local density following a quasi
Lagrangian scheme (Teyssier 2002), with cells that are 1kpc wide
at maximal refinement level. The dark matter particle mass is
8 × 107 M� , and the adopted resolution is such that the typical
mass of a stellar particle is 2 × 106 M� .

4.3 MAGNETICUM Simulations

The third set of cosmological hydrodynamical simulations
that we will use are the Magneticum Pathfinder simulations
(www.magneticum.org), hereafter simply magneticum (see Dolag
et al., in preparation,Hirschmann et al. 2014 andTeklu et al. 2015 for
more details on the simulation). We use the data from the medium-
sized cosmological box (Box 4) with a volume of (68 Mpc)3 co-
moving at the ultra high resolution level. magneticum adopts a
cosmology compatible with the Wilkinson Microwave Anisotropy
Probe 7 cosmology (Ωm=0.272, ΩΛ = 0.728, �0 = 70.4 km s−1
Mpc−1; Komatsu et al. 2011). The dark matter and gas particles
have masses of respectively 5.3 × 107 M� and 1.0 × 107 M� , and
each gas particle can spawn up to four stellar particles.

4.4 Mock Observations

The method for extracting kinematic measurements from eagle+
are described in Lagos et al. (2018b), for horizon-agn in Welker
et al. (2020), and in Schulze et al. (2018) for magneticum, all
corrected to �0 = 70.0 km s−1 Mpc−1. For all simulations, we
extract A-band luminosity-weighted effective radii, ellipticities, line-
of-sight velocities and velocity dispersions, adopting techniques that
closelymatch the observations. The _' values for horizon-agn are
derived using Eq. 1, whereas for eagle+ and magneticum we use
the definition as described in Emsellem et al. (2007). Note that
these different _' definitions do not impact our analysis as we are
investigating the separation of two kinematic families within each
distribution, without a direct quantitative comparison.

A mass limit of "★ = 5 × 109 M� is used for eagle, hy-
drangea, and horizon-agn, but a higher mass limit of "★ =

1×1010 M� for magneticum, to ensure that the simulatedmeasure-
ments from themock-observations arewell-converged.Nonetheless,
we acknowledge that with the spatial resolution of these simulations,
effects similar to observational beam-smearing might play a role in
the kinematic measurements of mock-observed simulated galaxies.
Lastly, a mass-matching technique is used to remove the difference
between the observed and simulated stellar mass function for a
clearer comparison of the results (for more details see van de Sande
et al. 2019), but we note that we find consistent results when no
mass-matching is enforced.
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Figure 10. Bayesian mixture model analysis to identify different kinematic populations in the eagle+ (left), horizon-agn (middle), and magneticum (right)
simulation using the spin parameter proxy versus stellar mass. The probabilistic fast and slow rotators (pFRs and pSRs) are shown as blue and red coloured
symbols. The contours mark the probability for a galaxy to be a slow rotator (p(SR)=50% black, and from light to dark red as 20%, 40%, 60%, 80%). We
find that the pSR/pFR divide in horizon-agn closest matches the observations, whereas the eagle+ and magneticum pSR/pFR cutoff reveal a respectively
stronger and milder increase of the pSR distribution as a function of stellar mass.

4.5 Separating Fast and Slow Rotators in Simulations using
Bayesian Mixture Models

We now repeat the Bayesian mixture model analysis from Section
3.4. Our goal is to see whether or not our mixture model recovers a
meaningful separation of the two kinematic distributions within the
simulated data, even though we have not demonstrated yet that two
kinematic populations exist. The results for all three simulations
are presented in Fig. 10, with the left column showing the eagle+
analysis, horizon-agn in the middle column, and magneticum on
the right-hand side. We present the separation of pSRs (red) and
pFRs (blue) using the 50 percent probability levels in the top row,
whereas the bottom row shows the the probability of being drawn
from the pSR beta distribution.

The difference in the location of the pSR population is strik-
ingly different for all three simulations. As compared to pSR se-
lection region from observations, we detect a steeper upturn in _'e
towards high stellar masses for horizon-agn and even steeper for
eagle+. In contrast, the magneticum pSR contours increase much
slower as a function of stellar mass, with a narrow range in per-
mitted _'e values, although the upper limit of the pSR selection is
similar to observations. The other striking difference between the
observations and simulations is the location and the shape of the
pFR distribution. At low stellar mass, both the eagle+ and mag-

neticum pFR distributions cover the full _'e range, whereas for
horizon-agn the peak of the pFR distribution is very low from
_'e ∼ 0.2 to ∼ 0.4.

From the probability of the pSR beta distribution as a func-
tion of stellar mass (Fig. 10f) it is clear that the Bayesian mixture
model for the magneticum simulation data is not as well con-
strained as compared to the other two simulations and the observed
SAMI Galaxy Survey data (Fig. 7). The numerous model realisa-
tions indicate that there is a considerable range of possible solu-
tions. The probability of finding the pSRs distribution at the highest
stellar masses in magneticum is also lower as compared to the ob-
servations (respectively, ∼0.5 versus ∼0.75), whereas eagle+ and
horizon-agn predict similar values. The similar mixture probabil-
ity from eagle+ and horizon-agn demonstrates that the mixture
model is insensitive to the large difference in the extent of the _'e
distribution between the two simulations.

In order to see how well the mixture model separates the pSR
and pFR distributions in the simulations data, we present the _'e
distributions in different stellar mass bins in Fig.11. We find a wide
variety of _'e distributions, both in terms of shape and maximum
_'e extent. Most noticeably for eagle+, and to a lesser extend
in horizon-agn, we find that the width of the pSR distribution
increases with increasing stellar mass, with a tail towards higher and
higher _'e even though the peak of the pSR distribution remains at
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Figure 11. Distribution of _'e from eagle+ (top), horizon-agn (middle), and magneticum (bottom) in four stellar mass bins. The observed distribution is
shown in grey, the best-fitting mixture model in black with the two beta distributions shown separately on top in blue and red. Note that the mixture models
have been fit to all mock-observed galaxies in the samples simultaneously, and has not been fit to the binned data shown here. In all three simulations, the
Bayesian mixture model indicates a bimodal distribution, but the differences between the _'e distributions from the three simulations are considerable with a
large overlap of the pFR and pSR distributions.

the same location. However, for magneticum the pSR distribution
is extremely narrow and does not change considerably as a function
of stellar mass.

In all three simulations the mixture model suggests a bimodal
distribution, even though two distinct peaks are not evident for each
simulation in Fig.11. While this does not imply that multiple kine-
matic populations do not exist, it does demonstrate the value of
investigating the kinematic distributions beyond the work as pre-
sented in van de Sande et al. (2019). Here, we find that the overlap
between the pSR and pFR distributions is more considerable in
the simulations as compared to observations, and that the dividing
line for pSR and pFR is at different _'e values as a function of
stellar mass. Thus, a good agreement between the observed and
simulated distributions does not automatically imply that the ratio

of sub populations matches as well. These results also show that the
observational selection criteria that are used to classify galaxies into
fast and slow rotators are not suitable to study the fractions of the
simulated populations as a function of stellar mass or environment.
Within the same SR selection region, between observations and
simulations it is unlikely that a comparable population of galaxies
will be selected without considerable contamination.

5 DISCUSSION

The taxonomy of galaxies determined from their visual morpholog-
ical properties has been a powerful tool to advance our knowledge of
the processes that shape galaxies, with the Hubble Sequence (Hub-
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ble 1926) and the De Vaucouleurs system (De Vaucouleurs 1959)
still in active use today. However, like any other area where taxon-
omy is used, an introduction of hard boundaries between classes can
create artificial dichotomies when in reality the transition between
these classes could be continuous 3.

With increasingly large samples of galaxies with resolved kine-
matic measurements, various kinematic classifications have now
been proposed. Some of these naming conventions have perhaps led
to an oversimplification of the way we view the kinematic galaxy
population with an assumption that the previously proposed classes
are distinct and independent. In this paper, we have investigated how
well we can separate a bimodal kinematic distribution in the galaxy
population, specifically when the data quality is more severely im-
pacted by seeing and spatial sampling. In the second half of this
analysis, we convincingly show that we can separate two kinematic
populations, yet when relying on secondary classifiers such as kine-
matic visual classification or kinemetry we find that the overlap of
these different classes can be considerable. Because of the mixing
of the different distributions, we are cautious to assign individual
galaxies to a certain class. Instead, we advocate using probabilities
to assess how likely it is that galaxies share the same properties.
Nonetheless, historically various kinematic tracers have been used
to promote the existence of a dichotomy. These will be reviewed in
this section.

5.1 Separating Fast and Slow Rotators based on Visual
Kinematic Classification

We will start with a historical context on the visual kinematic iden-
tification of the first resolved kinematic maps that formed the foun-
dation of the work that we present in this paper. Kinematic visual
classification only became advantageous with the introduction of
the SAURON IFS (Bacon et al. 2001), followed by several IFS sur-
veys. But, as we will argue in this section, the lack of a clear and
well-defined classification scheme and the limited field of view has
made kinematic visual classification overly subjective with some
key results left open to alternative interpretations.

The SAURON survey (de Zeeuw et al. 2002) yielded kinematic
maps for a significant sample of 48 nearby early-type galaxies. A
visual analysis revealed that most early-type galaxies show a signif-
icant amount of rotation, whereas others have complex dynamical
structures inconsistent with being simple rotating oblate spheroids
(Emsellem et al. 2004). Visual classification of the kinematic maps
was further explored in Emsellem et al. (2007) and Cappellari et al.
(2007) who introduced the fast and slow rotator classes. However,
a detailed look at some of the early results suggests that even with
good quality data, the classification is not always obvious. For ex-
ample, we would argue that from fig. 1 in Emsellem et al. (2007), it
is not clear that elliptical NGC 5982 (2nd row, 6th column) is a slow
rotating galaxy as the outskirts show rapid rotation. In our revised
kinematic classification scheme from Section 3.3 this galaxy would
be classified as an obvious rotator with features (OR-WF).

Similar ambiguities can be found in the kinematic maps from
the ATLAS3D Survey using the SAURON IFS, as presented in fig. 1
from Krajnović et al. (2011). For example, galaxies NGC 4472 and
NGC 4382 are classified as NRR-CRC (Counter-Rotating Core)
and RR-2M (Double Maxima), respectively. From kinemetry the
classification into NRR and RR is clear: 〈:51,e〉 = 0.197±0.075 for

3 See Graham (2019) for a detailed discussion on the "artificial division of
the early-type galaxy population" from size measurements.

NGC 4472 and 〈:51,e〉 = 0.025 ± 0.009 for NGC 4382. However,
when attempting a visual classification of the velocity fields, we
would argue that these velocity fields in the outskirts do not look
that different, where there are clear signs of rapid ordered rotation.
Both galaxies are round (Ye=0.17, 0.2) and have respective _'e
values of 0.08 and 0.16, which puts them well-below and relatively
close to the fast/slow rotator dividing line (SRs must have _'e<0.14
at Ye=0.20). Combined with the fact that both velocity fields do not
extend beyond 0.26-0.36'e, it is hard to argue that one galaxy is a
clear slow rotator whilst the other is not.

Our revised kinematic classification scheme was purposely de-
signed to take into account such ambiguity by adopting a new termi-
nology of "obvious" and "non-obvious" rotation (ORs and NORs).
Even though the extent of the kinematic maps is still important,
outer versus inner rotation is more clearly defined in this revised
scheme (see also Section 5.5). Additionally, our SAMI kinematic
sample has at least one 'e kinematic coverage for ∼ 80 percent of
the galaxies, and only a relatively small fraction of galaxies do not
extend beyond 0.5'e (∼ 5 percent).

The new visual classification scheme also allows each user
to come up with their own interpretation of what ORs and NORs
could look like, althoughwe offer some examples ofwhat the classes
might look like. "Self-calibration" is important in this classification
scheme, and to facilitate this, each classifier was shown their col-
lection of galaxies assigned to the same class after each subset. By
being allowed to swap galaxies between classes, the most optimal
selection could be made. Given this ambiguity and flexibility in the
classification scheme, the bimodal distribution of ORs and NORs
in the _'e -"★ space (Fig. 6) is surprisingly clear, and confirms that
two classes indeed exist.

Unlike some previous classifications (Graham et al. 2018), we
advocate for the aggregation of classifications from many indepen-
dent classifiers. A comparison of visual classifications from three
different authors on the SAMI maps, using the classifying scheme
from Krajnović et al. (2011), resulted in a large range in classifica-
tion, with poor overall agreement. Results based off single classifiers
may thus be biased and artificially skew the resulting distributions.A
supervised machine learning approach (e.g., boosting), or a citizen
science project (e.g., Galaxy Zoo; Lintott et al. 2008), could provide
a viable solution for the near future when the number of galaxies
with 2D kinematic maps is expected to grow beyond 10,000. We
further emphasise that a more quantitative approach guided by these
visual classifications should always be sought to connect to other
studies and simulations

5.2 Separating Regular and Non-Regular Rotators using
Kinemetry

kinemetry offers a quantification of the irregularity of the velocity
field (Krajnović et al. 2006, 2008, 2011) and has been exploited
to classify galaxies into Regular and Non-Regular classes. This
technique uses Fourier harmonics to quantify the residual of the
rotational velocity field from a simple cosine law. Krajnović et al.
(2011) adopt 〈:5/:1〉 − 〈:5/:1error〉 < 0.04, the flux-weighted ra-
tio of the Fourier terms within one 'e, as the limit for identifying
a galaxy as a regular rotator. This classification scheme formed the
basis for the revised _'-Ye separation line of fast and slow rotators
in Emsellem et al. (2011) and Cappellari (2016). We re-analyse
the separation of ATLAS3D fast and slow rotators using our ROC
analysis (see Appendix D1) and find a clean separation of RR and
NRR with a high Positive Prediction Value (89.7), but with an op-

MNRAS 000, 1–30 (2020)



Towards an Optimal Kinematic Classification 19

timal selection region that has a higher _'e limit as compared to
Emsellem et al. (2011) or Cappellari (2016).

Nonetheless, using a sub-set of high-quality SAMI Galaxy
Survey data, van de Sande et al. (2017b) showed that the 〈:5/:1〉
distribution from both ATLAS3D and SAMI was peaked around
〈:5/:1〉 ∼ 0.02 − 0.03 but with a continuous tail towards higher
〈:5/:1〉 values. Yet, the shape of this distribution does not suggest
that the distribution in 〈:5/:1〉 is bimodal. Furthermore, in Section
3.2 we show that with lower quality data, the overlap of regular and
non-regular galaxies in the _'-"★ and _'-Ye space is considerable.
As 〈:5/:1〉 is intrinsically correlated with+/f and _' through the
rotational component, galaxies with high +/f or _' values will
always have lower 〈:5/:1〉 if the :5 component remains constant.
Thus, while kinemetry provides a useful and quantifiable measure
of the kinematic asymmetry of the velocity field, we argue that this
method does not provide strong evidence for a kinematic dichotomy.

5.3 Separating two kinematic families using JAMModelling

Using Jeans Anisotropic MGE (JAM) modelling of ATLAS3D
galaxies (Cappellari et al. 2013b), Cappellari (2016) show that the
distribution of ^ is bimodal, where ^ is the ratio of the observed
velocity +obs and the modelled velocity + (fq = f') from JAM
using an oblate velocity ellipsoid. Regular rotators are Gaussian
distributed around ^ = 1, whereas non-regular rotators conglomer-
ate towards zero, with minor overlap of both distributions (see also
C1c).

In Appendix D2 we repeat our ROC analysis with ATLAS3D
data using ^ < 0.65 as the identifier for slow rotators. We only
find a marginal improvement of the MCC parameter if we use JAM
modelling as compared to using kinemetry. Further, as noted by
Cappellari (2016), for non-regular rotators without a disk "the shape
of the predicted + (fq = f') is, even qualitatively, very different
from the observed velocity field." JAM models assume axisymme-
try, so perhaps it is unsurprising that triaxial ETGs have low values
of ^. Nonetheless, dynamical modelling clearly shows that there is a
family of galaxies consistent with being axisymmetric oblate rotat-
ing spheroids, and a class of galaxies with more complex dynamical
properties that are not well-fitted by Jeans models. Schwarzschild
modelling (Schwarzschild 1979), has great potential for understand-
ing the orbital structure of all types of galaxies (see for example van
den Bosch et al. 2008; van de Ven et al. 2008; Zhu et al. 2018a,b,
using SAURON and CALIFA IFS data). Yet, the technique remains
computationally expensive and requires high-quality data for the
orbital decompositions to be non-degenerate.

5.4 Do Simulations Predict Two Kinematic Families?

Many theoretical studies have tried to explain the origin of the dif-
ferent kinematic classes of galaxies, in particular in relation to the
impact of mergers (for a review on the topic, see Naab et al. 2014).
While several early-type formationmodels managed to create galax-
ies with little rotation, the detailed properties of those simulated
galaxies still differ significantly from observations (e.g., Bendo &
Barnes 2000; Jesseit et al. 2009; Bois et al. 2011). The slow rotators
from these simulations are typically flatter (0.45 < ne < 0.65; Bois
et al. 2011) than what is observed (0 < ne < 0.45; Emsellem et al.
2011), although subsequential mergers are able to produce rounder
slow rotators (Moody et al. 2014).

Binary galaxy mergers simulations have been used extensively
to study the origin of fast and slow rotating galaxies. Similar to

results from observations, these simulations demonstrate that the
majority of merger remnants are consistent with being fast rotating
galaxies (Bois et al. 2010, 2011).The mass ratio of the progenitors
in binary-disk mergers appears to be the most-important parameter
for creating slow rotators, yet the formation of slow rotators also
requires specific spin-orbit alignments (Jesseit et al. 2009; Bois et al.
2010, 2011). The relative importance of a dissipational component
in the formation of a bimodal populations is still unclear, with
contrasting results from Cox et al. (2006) and Taranu et al. (2013),
who show that mergers with different gas fractions can lead to
galaxies without strong rotation. A clear bimodality in _'e -Ye is
seen in both Jesseit et al. (2009) and Bois et al. (2011), but Bois
et al. (2011) caution that this bimodality "could likely result from
the specific choices of simulated mass ratios and the limited number
of simulated incoming orbits".

Cosmological simulations offer a more realistic insight into the
kinematic distribution of modelled galaxies, by taking into account
the full assembly history of galaxies. However, when the proper-
ties of fast and slow rotators have been studied in large volume
cosmological simulations, the fast/slow selection nearly always fol-
lows the observational criteria. Here, we demonstrate that two beta
functions are required to accurately describe the _'e -log("★/"�)
distribution from cosmological simulations, albeit with consider-
able differences in the location of the different distributions of fast
and slow rotators as compared to observations and between sim-
ulations. Quantitative offsets in galaxy structural, kinematic, and
stellar population parameters were already demonstrated to exist as
shown by van de Sande et al. (2019), so it is not surprising that the
selection criteria for fast and slow rotators should be adapted for the
different simulations.

Nonetheless, the large differences of the pSR populations to-
wards higher stellar mass in the simulations is perhaps surpris-
ing. While lower mass galaxies assemble their stellar material
primarily though star formation (Robotham et al. 2014), mergers
dominate the addition of stellar material in galaxies above M∗
(log("★/"�) ∼ 10.75) and also are key in lowering angular mo-
mentum in galaxies. Large differences between the frequency and
mass-ratio of mergers are not expected between different cosmolog-
ical simulations, which points towards a different problem within
the simulations. The key might lie in the fast-rotating population.
None of the simulations showed a close match to the observed pFR
distribution, and if the progenitors of slow-rotators do not match
the observed distribution, perhaps we should not expect the pSR
distribution to match either.

Alternatively, the large differences in the_' distributions could
indicate that the presence and treatment of gas, star-formation, as
well the feedback subgrid models in these simulations are more
critical for the kinematic properties of all galaxies than previously
assumed, although the effects could be indirect. The exact prescrip-
tion for feedback is modelled will change the abundance of gas in
galaxies and will therefore impact the frequency in which dry versus
wet mergers happen as well as their typical mass ratios (e.g., see
Dubois et al. 2013, 2016; Lagos et al. 2018a). Both of these factors
are important in the formation of slow rotators. This idea is in con-
tradiction with the finding from Penoyre et al. (2017) who conclude
that no major difference is found due to presence of gas in mergers
in illustris, whereas Naab et al. (2014) using cosmological zoom-
in simulations, and Lagos et al. (2018a,b) using eagle, found a
clear impact of the gas content on galaxy spin. The latter results are
also confirmed by Martin et al. (2018) who find that the morphol-
ogy of merger remnants strongly depends on the gas fraction of the
merger and that re-grown disks are common in gas-rich mergers.
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Figure 12. Seeing-corrected spin parameter proxy versus stellar mass colour coded by visual morphology. The three panels show combined classes of FRs
(panel a), SRs (panel b), and galaxies with mixed classifications (panel c). The fraction of galaxies with mixed classification is considerable (12.6 percent, 205
/ 1625) and the mixed sample spans a large in _'e .

However, as no clear picture into the formation of slow rotators has
yet emerged from large-volume cosmological simulations, it will be
paramount to accurately compare distributions of observations and
simulations in consistent ways.

5.5 The impact of a Radial Extent on the Slow Rotator
Classification

The radial extent out to which the kinematic measurements are
analysed also has a significant impact on the fast and slow rotator
classification. When visually classifying kinematic maps, more at-
tention may subconsciously be given to larger radii, with the eye
being drawn to the larger number of spaxels in the outskirts. This
is one of the reasons why our revised classification scheme distin-
guishes between obvious versus non-obvious rotation, which can
be more easily picked up in the outskirts, with a refinement option
for kinematic features towards the centre. Nonetheless, if the radial
coverage of the kinematic maps do not extend beyond the central
region (e.g., < 0.5'e), the classification will be inherently biased.

For quantitative measurements, a scale of one 'e is typically
adopted because of observational constraints that are necessary to
obtain the required S/N ratio to extract the LOSVD beyond this ra-
dius. However, there is no physical reason to restrict our kinematic
measurements to within this radius and this approach might have
hampered our understanding of galaxies (e.g., see Graham 2019).
The radial coverage varies considerably between different IFS sur-
veys, but more importantly, it typically changes as a function of
stellar mass within surveys as well. The necessity for aperture-
correcting _' and +/f measurements is demonstrated in van de
Sande et al. (2017a) (see also D’Eugenio et al. 2013) who show that
there is a strong bias in the largest measurable kinematic radius as
a function of stellar mass, which significantly impacts the fraction
of slow rotators.

Studiesmeasuring the kinematic parameters out to larger radius
have demonstrated that the rotational properties of galaxies can
change when measured at a different radius (e.g., Weĳmans et al.
2009; Proctor et al. 2009; Arnold et al. 2011). More recently, radial
tracks within the _' − Y space have been utilised to study how

the radial kinematic behaviour changes using increasingly large
samples (Graham et al. 2017; Bellstedt et al. 2017; Foster et al.
2018; Rawlings et al. 2020). While several past (e.g., SLUGGS,
Brodie et al. 2014; CALIFA, Sánchez et al. 2012) and upcoming
(e.g., Hector Bryant et al. 2016; MAGPI, Foster et al. in prep) IFS
surveys are aimed at providing larger 'e coverage, for the coming
years the largest samples of galaxies will still be restricted to 1-
2'e. Therefore, well-calibrated large cosmological simulations will
be crucial to offer insight into the build-up of mass and angular
momentum at large radius (e.g., Schulze et al. 2020; Pulsoni et al.
2020) which can be tested observationally with smaller samples that
have large 'e coverage (e.g., Sarzi et al. 2018; Gadotti et al. 2019).

5.6 How To Best Separate Two Kinematic Families

Themain aim of this paper is to investigate howwe can best separate
different kinematic populations and to what extent these different
kinematic populations overlap. In our analysis, we have investigated
three kinematic classifications in detail (kinemetry, visual kine-
matic morphology, and Bayesian mixture model classification), but
have not yet directly compared the different classifications to each
other. We address this here by looking at the agreement and dis-
agreement between these methods. We select galaxies which have
all three classifications, which reduces the total sample from 1765
to 1625 galaxies, caused by the fact that not all galaxies have 〈:51,e〉
measurements out to one 'e. Galaxies are then grouped according
to where their classifications agree: 1) a galaxy is an RR, an OR,
and a pFR (Fig. 12a), or 2) a galaxy is an NRR, an NOR, and a pSR
( Fig. 12b), or 3) a galaxy only has two out of three matching clas-
sifications (Fig. 12c). It should be noted that none of the kinematic
identifiers used here are truly independent as they all rely on the
velocity and velocity dispersion maps.

The overlapping FR classifications form the biggest group with
82.6 percent (1342/1625), the SRclassifiers are the smallest (4.8 per-
cent; 78/1625), whereas galaxies with mixed classifications make
up 12.6 percent of the total sample (205/1625). Within the mixed
classified sample, the largest subgroup is where galaxies are classi-
fied as ORs and pFRs, but where kinemetry suggests the galaxies
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are NRRs (114/205). As most of these galaxies reside towards lower
stellar masses and higher _'e we argued before that the high 〈:51,e〉
values that lead to this classification are more likely caused by ob-
servational effects rather than their intrinsic properties. This suggest
that when using kinemetry with SAMI-like data quality, the NRR
population has the highest probability to be contaminated with ORs
and pFRs.

We conclude that the visual kinematic morphology and the
Bayesian mixture model analysis provide the most consistent clas-
sification. Using a modified version of the Cappellari (2016) slow
rotator selection region, we also find a high positive predictive
value for separating the NOR/OR and pSR/pFR classes. Therefore,
a combination of the two methods with the associated selection box
is recommended for selecting SRs from the SAMI Galaxy Survey
or data with similar quality when aiming to compare to previous
studies that separate fast and slow rotators.

6 CONCLUSION

The dynamics of galaxies offers great insight into the assembly and
restructuring of stellar mass within galaxies over time. The pre-
vailing physical explanation for drastically altering the dynamical
properties of galaxies is undoubtedly merging. Yet many questions
still remain on the importance of gas as a dissipational component as
well as the frequency of major and minor mergers and their impact
on the inner and outer stellar distributions. Key to answering these
questions is identifying the different kinematic populations that exist
and link these to the various proposed formation scenarios.

Using data from the SAMI Galaxy Survey we investigate
whether or not we can detect a bimodality in the kinematic proper-
ties of the entire galaxy population using _'e versus stellar mass and
ellipticity. The main goal of the paper is to use different techniques
to identify whether we can accurately separate a bimodal kinematic
distribution in relatively low-signal-to-noise, seeing-impacted data,
and to what extent different kinematic populations overlap. By do-
ing so, we aim to consolidate results from ongoing multi-object IFS
surveys with the conclusions from previous IFS surveys that had
better S/N and spatial resolution, but where the sample size did
not allow a statistical analysis. We also provide a framework for
comparing these results to mock-observations from cosmological
simulations.

We find the following results:
(i) Partially applied seeing corrections can lead to an ar-

tificially enhanced bimodality: Using 1765 SAMI galaxies with
_'e measurements we investigate the impact of the seeing correc-
tions from Graham et al. (2018) and Harborne et al. (2020a). No
clear bimodal distribution in _'e is detected in the SAMI seeing-
dominated data or when the Harborne et al. (2020a) correction is
applied to all galaxies (Figs 3a and c). Enhanced number statistics
combined with better kinematic data quality (e.g., Hector, Bryant
et al. 2016) could still show more distinct peaks. However, when
only regular rotators are seeing-corrected, as was done in Graham
et al. (2018), we detect a clear bimodal distribution in _'e , but we
argue this is an artificial construct as the correction is applied to a
subset of the sample (Fig. 3b). Thus, from the _'e -Ye diagram alone
using SAMI Galaxy Survey data, we do not find strong evidence for
distinct kinematic populations of galaxies.

(ii) Considerable overlap of regular and non-regular rota-
tor distributions with SAMI: With galaxies classified as regular
and non-regular rotators from the kinematic asymmetry of the rota-
tional velocity fields using the kinemetry method, we investigate

the amount of overlap of the RR and NRR distributions within the
_'e -log("★/"�) and _'e -Ye diagrams. At low stellar mass, NRR
(〈:51,e〉>0.07) have higher values of _'e than at high stellar mass
(Figs 4a and c). While this might be caused by lower S/N values
at these stellar masses which could increase :5, we observe the
same trend with higher-quality data from the ATLAS3D Survey
(Fig. D1a). Alternatively, this trend could be caused by low-mass
galaxies having lower absolute rotation speeds that causes 〈:51,e〉
to increase if :5 remains constant.

We find considerable mixing of the regular and non-regular
rotator populations in our SAMI sample, in particular below
log("★/"�) < 10.75. The trend of decreasing 〈:51,e〉 values with
increasing stellar mass also leads to considerable overlap of RRs and
NRRs within the _'e -Ye diagram. We use a "Receiver Operating
Characteristic Curve" (ROC) to determine the best possible selec-
tion box to separate RR and NRR within the _'e -Ye diagram. This
method is based on the True Positive Rate ()%') against the False
Positive Rate (�%'), although we adopt "Matthews correlation co-
efficient" ("��) to quantify the quality of the binary kinemetry
classification. For SAMI Galaxy Survey data the optimal selection
region has a higher _'e threshold as compared to the selection box
from Cappellari (2016), but overall does not provide a clean sep-
aration of regular and non-regular rotator classes as the Positive
Prediction Value is only 65.7 percent.

(iii) Visual kinematic classification of SAMI data leads to
a cleaner separation of two kinematic populations: Although
kinemetry offers a quantitative measure of the kinematic irreg-
ularity, the spatial resolution of the SAMI data do not allow for
a detailed radial 〈:51,e〉 analysis as presented by Krajnović et al.
(2011). Instead, we devise a new visual classification scheme that
first separates galaxies with obvious rotation (ORs) from galaxies
with no obvious rotation (NORs), combined with a second layer
of refinement to find galaxies with inner kinematic features (with-
features versus no-features). We demonstrate that this kinematic
visual classification scheme is optimal for data that has a large
range of S/N and spatial resolution, e.g., for SAMI, MaNGA, or
Hector. There is a well-defined separation of ORs and NORs within
the _'e -log("★/"�) and _'e -Ye planes. Similar to kinemetry we
find that the NORs have higher values of _'e towards lower stellar
mass. The optimal selection region for selecting NORs using _'e
and Ye is close to the selection region from Cappellari (2016). Fur-
thermore, the ROC analysis reveals a significantly higher success
rate as compared to using kinemetry for SAMI, which suggests
that our visual classification scheme is more suitable for data with
the typical spatial resolution of SAMI or MaNGA.

(iv) Bayesian mixture models provide the cleanest separa-
tion of two kinematic families: Rather than looking for two popu-
lations using kinemetry or visual classification, we use a Bayesian
mixture model analysis to determine whether multiple populations
can be identified as a function of stellar mass. The main assumption
of the model is that the _'e distribution is well described by at
least one beta distribution. At all stellar masses, the _'e distribution
for late-type galaxies is well described by a single beta distribution
that peaks at _'e ∼ 0.6. However, for early-type galaxies above
log("★/"�) > 10 a second beta distribution is required with a
lower peak at _'e ∼ 0.1. These results demonstrate clearly that we
can separate two stellar kinematic populations from the _' distri-
bution, even when these distributions have non-negligible overlap.
Our Bayesian analysis allows us to determine the probability of a
galaxy being drawn from either population as a function of stellar
mass. Based on these results, we then refer to galaxies as probabilis-
tic fast or slow rotators (respectively, pFRs and pSRs). In contrast

MNRAS 000, 1–30 (2020)



22 Jesse van de Sande

to NRRs and NORs, pSRs have lower _'e values at lower stellar
mass. This could indicate that the NRRs and NORs found at low
stellar mass are simply the lower tail of a broad _'e distribution,
but not a separate class. Even though pSR have slightly higher _'e
values towards high stellar mass, the pSRs and pFRs are extremely
well-separated within the _'e -Ye, but with a caveat that pSRs were
selected primarily using _'e .

(v)Mixed results fromCosmologicalHydrodynamical Sim-
ulations: We apply the same Bayesian mixture model analysis to
mock-observations from the eagle and hydrangea, horizon-
agn, and magneticum cosmological hydrodynamical simulations
using the measurements as presented by van de Sande et al. (2019).
Although the mixture model predicts two populations of stellar
rotators in all three simulations, the _'e peak of the two beta dis-
tributions is significantly offset from observations, and the fraction
of both beta distributions as a function of stellar mass also change
considerably. The overlap of the two beta distributions also differs
significantly between the simulations. Our results indicate that the
treatment of the ISM and feedback subgridmodels within these sim-
ulation have a considerable impact on the distribution of fast and
slow rotators. More importantly, observational selection criteria for
fast and slow rotators should not be applied to data from simulations
to derive the fraction of different kinematic populations unless the
distributions in _'e and Ye are well-matched to the observations
they are compared to.

(vi) The importance of stellar mass in analysing galaxy
kinematics: Depending on the kinematic galaxy identifier (e.g.,
kinemetry, visual classification, Bayesian mixture models) we find
different trends of _'e with stellar mass. Nonetheless, all identifiers
show that the fraction of NRRs, NORs, and pSRs increases with
stellar mass, confirming results from several previous studies (e.g.,
Emsellem et al. 2011; Brough et al. 2017; Veale et al. 2017; van
de Sande et al. 2017a; Green et al. 2018; Graham et al. 2018). A
critical stellar mass limit of log("★/"�) ∼ 11.3 has been pro-
posed as the limit above which passive slow rotators with cores
dominate (see discussion in Cappellari 2016), to the point where
galaxies below this mass limit are no longer classified as slow rota-
tors (Graham et al. 2019). Although our data quality does not allow
us to address the question of whether slow rotators in our sample
have core or power-law inner light profiles, using kinemetry, visual
kinematic classification, or the Bayesian mixture models we do not
find evidence for a limit below which there are no non-regular or
non-obvious rotators. Furthermore, some of the cosmological sim-
ulations data analysed here also reveal a small, but non-negligible
fraction of slow rotators towards low stellar mass. Hence, we are
cautious to use mass as a selection criterion for slow rotators, in
particular when their formation process is still not well understood.

(vii) The optimal classification of galaxy stellar kinematics:
By comparing three kinematic classification methods (kinemetry,
visual kinematic morphology, and a Bayesian mixture model) we
find the best agreement between the visual kinematic morphology
and Bayesian mixture model classification. For comparing to previ-
ous studies that adopted the Cappellari (2016) selection box to sepa-
rate fast and slow rotators, we advise using Eq. 6 with _'start = 0.12
when the data quality is similar to that of the SAMI Galaxy Survey.
However, we stress that our analysis revealed a significant amount of
overlap between the different kinematic distributions which should
be acknowledged.

Going forward: Many claims about a kinematic bimodality
have been made in the past with an ongoing unquenchable drive
to separate galaxies into binary classification. In this paper, we
confirm key findings from previous and ongoing IFS studies that

the vast majority of galaxies are consistent with being a family
of oblate rotating systems viewed at random orientation. At the
same time, there is a group of mainly massive early-type galaxies
that show complex dynamical structures, irregular velocity fields,
2-sigma peaks, or kinematic misalignment, with indications that
some fraction of these galaxies are triaxial systems.

The rapid increase in the number of galaxy IFS observations
has been achieved by a compromise between multiplexing, spa-
tial resolution and S/N. Nevertheless, we have demonstrated that
we can extract different kinematic populations in seeing-impacted
data, but only when the analysis techniques are matched to the data
quality. However, even when using higher-quality data (e.g., see
Appendix D), with different kinematic identifiers the same galaxy
can be simultaneously classified into opposite groups (e.g., a RR-
SR or NRR-FR). Our results show that is has become essential to
take into consideration that the distributions of various kinematic
populations overlap. When the overlap and mixing of classes is ig-
nored, and naming conventions for various kinematic classifications
slowly morph into a singular class (e.g., all non-regular rotators are
slow rotators and vice versa), the complexity of galaxy evolution is
disregarded. Cosmological simulations have shown that galaxy evo-
lution is a highly stochastic process, hence we do not expect distinct,
cleanly separated classes. Instead, we promote the analysis of stel-
lar kinematic data using probability distribution functions instead
of bimodal classes. With more than 10,000 IFS galaxy observa-
tions becoming publicly available soon (e.g., SAMI Galaxy Survey,
SDSS-IV MaNGA), now is the perfect time to further pursue such
an endeavour.

7 DATA AVAILABILITY

The observational data presented in this paper will become
available from Astronomical Optics’ Data Central service at
https://datacentral.org.au/.
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APPENDIX A: TESTING SEEING CORRECTIONS ON
REPEAT OBSERVATIONS

A1 Analytic correction to account for atmospheric seeing

In this paper we use an analytic seeing correction for _' as pre-
sented by Harborne et al. (2020a) using the public code SIMSPIN
(Harborne et al. 2020b), optimised for SAMI Galaxy Survey data.
Specifically, the corrections in Harborne et al. (2020a) cover the full
range of 0 < fPSF/'e < 0.9, whereas the median fPSF/'e=0.22
for SAMI data with a defined maximum limit of fPSF/'e < 0.6.
The updated equation for _' is (where ' is the semi-major axis of
the ellipse on which each spaxel lies):

Δ_corrY−' = 5

(
fPSF
'maj

)
+

(
fPSF
'maj

)
× 5 (Y, =, 'faceff ), (A1)

where,

5

(
fPSF
'maj

)Δ_Y
'

=
7.44

1 + exp[4.87
(
fPSF
'maj

)1.68
+ 3.03]

− 0.34, (A2)

5 (Y, =, 'faceff )
Δ_Y

' = [0.011 × log10 (Y)]
− [0.278 × log10 (=)]
+ 0.098 (A3)

Here, = is the Sérsic index, and 'faceff is the radius (in units of 'e) at
which _' is measured ('faceff = 1 in our case). Similarly, for +/f:

Δ+/fcorr = 5

(
fPSF
'maj

)
+ 3

(
fPSF
'maj

)
× 5 (Y, =, 'faceff ), (A4)

where,

5

(
fPSF
'maj

)Δ+ /f
=

7.47

1 + exp[5.31
(
fPSF
'maj

)1.68
+ 2.89]

− 0.39, (A5)

and,

5 (Y, =, 'faceff )
Δ+ /f = [−0.078 × Y]

+ [0.0038 × log10 (=)]
+ 0.029 (A6)

Using these equations, we can then calculate _ intr
'e

(the intrinsic or
true value of the spin parameter proxy) from the observed _ obs

'e
.

_ intr'e = 10
[
log10 (_ obs'e )−Δ_

corr
'

]
, (A7)

and similarly for +/f

(+/f) intre = 10
[
log10 ( (+ /f) obse )−Δ+ /fcorr]

. (A8)

The SAMI stellar kinematic sample has a median fPSF/'e=0.22
that results in a median _' correction factor of 0.14 dex, or an
average absolute increase in _'e of +0.11. Above fPSF/'e > 0.6,
the correction factor increases rapidly, which is the main motivation
for not using data above this limit for the main analysis.

A2 Testing Seeing correction on Repeat Observations

We now use SAMIGalaxy Survey repeat observations to test the an-
alytic seeing correction as described in the previous section. Repeat
observations are ideal for estimating uncertainties due to weather
conditions, such as seeing and transmission, but also in the use of
different hexabundles. Due to the SAMI Galaxy Survey’s optimal
field tiling and plate configuration, there are a total of 210 galaxies
that have repeat observations. For this analysis, we only use galax-
ies that meet our selection criteria from Section 2, with full stellar
kinematic 'e coverage. The full 'e coverage selection is applied
to avoid confusing uncertainties from our _' aperture correction
with those due to the impact of seeing. This selection reduces the
number of galaxies with repeat observations to 169.

In the top row of Fig. A1 we present the _'e measurement
for the original and repeat observations, with and without differ-
ent methods to correct for the seeing. The bottom row of Fig. A1
shows the fractional difference of the PSF’s FWHM versus the frac-
tional difference in _'e . Galaxies from observations with the better
combination of seeing and S/N are called "original", whereas the
other secondary observations are named "repeats". We note that our
sample of repeat observations is a representative sub-sample of the
total stellar kinematic sample, with similar stellar mass and mor-
phological type, and is observed under similar seeing conditions.
The median FWHMPSF of the repeat observations is 2.′′06, whereas
the average seeing of the entire stellar kinematic sample is 2.′′04.
The best-seeing repeat observation has FWHM=1.′′37, whereas the
worst repeat has FWHM=2.′′85.

The seeing correction from Harborne et al. (2020a) applied
to the _'e repeat measurements are shown in Fig. A1(c). This
figure demonstrates that the seeing correction works well across
the large range in _'e measurements. For low values of _'e<0.35,
where we expect most galaxies with complex kinematic features,
the agreement between the seeing-corrected original and the repeat
measurement is excellent. Thus, the analytic correction works for
all types of galaxies, including slow rotators. Figs A1(b) and (d)
show that the RMS of the fractional differences goes down from
0.065 to 0.046 when the seeing correction is included.

A3 Empirical correction to account for atmospheric seeing

In this section, we test an alternative method to correct for the
impact of seeing on our kinematic data. The idea here will be to
use an empirical relation derived from the repeat observations to
homogenise the sample to a common average seeing. Such a data
driven approach has the advantage that it is not biased to the choice
of simulations to derive the analytic seeing correction. For exam-
ple, the analytic correction has not been designed for galaxies with
complex dynamics (although the correction works relatively well
with little scatter and the absolute _' correction for these galaxies
is small). An empirical seeing homogenisation can be applied to the
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Figure A1. Comparison of _'e measurements from repeat observations. In the top row we show _'e for the original data (panel a), with the seeing correction
from Harborne et al. (2020a) applied (panel b), and after homogenising the sample to a common seeing of 2.′′0 (panel c). In the bottom row we show the
fractional difference in _'e versus the difference in seeing of the original and repeat observations. The dashed line in panel d) shows the best-fit relations as
given by Eq. A9 that were used to homogenise the data (panels c and f).

whole sample because it is based on the exact same observational
setup and data quality as the sample that it will be applied to. The
large range inmorphology, stellar mass, and _' values for the repeat
observations also remove any morphological bias. A homogenised
sample might also be more appropriate to use for comparing to sim-
ulations. The philosophy here is that it is more reliable to convolve
mock-observations from simulations to the seeing of an observa-
tional survey then it is to deconvolve observational results.

For these reasons, we will now derive an empirical seeing
correction or homogenisation, and test how well it removes the
scatter in _' and+/f using repeat observations. Figs A1(a) and (d)
show the results from the repeat observations without applying any
corrections. We find that there is a linear trend between ΔFWHM
and Δ_'e , such that with a larger difference in seeing between the
original and repeat, the larger the difference in _' . By fitting a linear
relation to our data from Fig. A1(d), our goal is to remove the trend
between FWHM and _' . Motivated by the results from the analytic
correction we separate the sample into different bins of fPSF where
the impact of seeing will be different. We find that:

log10 (_
orig
'e
/_ rep
'e
) = −0.247 × log10 (FWHM

orig
PSF /FWHM

rep
PSF)

for 0.0 < fPSF < 0.2 (A9)

log10 (_
orig
'e
/_ rep
'e
) = −0.380 × log10 (FWHM

orig
PSF /FWHM

rep
PSF)

for 0.2 < fPSF < 0.4 (A10)

log10 (_
orig
'e
/_ rep
'e
) = −0.520 × log10 (FWHM

orig
PSF /FWHM

rep
PSF)

for 0.4 < fPSF < 0.6 (A11)

The best-fit relation are shown in Fig. A1(b). As expected, with
increasing fractions of fPSF the slope of the relation between _'
and FWHM also increases. The analysis is repeated on the +/f
measurements (not shown here), from which we find the following
relations:
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log10 ((+/f)
orig
e /(+/f) repe ) = −0.380×

log10 (FWHM
orig
PSF /FWHM

rep
PSF)

for 0.0 < fPSF < 0.2 (A12)

log10 ((+/f)
orig
e /(+/f) repe ) = −0.495×

log10 (FWHM
orig
PSF /FWHM

rep
PSF)

for 0.2 < fPSF < 0.4 (A13)

log10 ((+/f)
orig
e /(+/f) repe ) = −0.580×

log10 (FWHM
orig
PSF /FWHM

rep
PSF)

for 0.4 < fPSF < 0.6 (A14)

We use Eq. A9 to homogenise our _'e measurements to a
single seeing value of 2.′′0, which are shown in Fig. A1c,f. The
difference between the original and repeat observations has become
smaller,with a clear reduction in theRMSscatter. Themethodworks
surprisingly well given the low number of free parameters in the
fit. Even more so, if we use a single relation to fit all data between
0.0 < fPSF < 0.6, the RMS scatter only increases marginally
to 0.049. In summary, homogenising the data reduces the scatter
similarly as the analytic correction from Harborne et al. (2020a).
In this paper, we adopt the analytic corrected to derive the intrinsic
_' such that we can compare to previous surveys where seeing was
not a limitation. However, for a comparison to mock observations
from large cosmological simulations, which might be impacted by
numerical resolution effects, a seeing homogenisationmethodmight
be more suitable.

APPENDIX B: THE IMPACT OF INCLINATION ON THE
_'e DISTRIBUTIONS

To test the impact of inclination on the _'e distributions, we will
compare the distribution of our default _'e measurement to _'e
values corrected to an edge-on projection. These _'e edge-on es-
timates are derived from the observed _'e and Ye measurements
following the method described in van de Sande et al. (2018) and
van de Sande et al. (in preparation). The method combines the ob-
served properties with theoretical predictions from the tensor Virial
theorem (Binney 2005) and builds on the assumption that galaxies
are simple rotating oblate axisymmetric spheroids with varying in-
trinsic shape and mild anisotropy (Cappellari et al. 2007). As this
is an oversimplification of the known complexities of galaxy struc-
ture and dynamics, in particular for massive early-type galaxies, for
this analysis we therefore only investigate how the distribution of
late-type galaxies changes.

We present the _'e and _
edge−on
'e

distributions for SAMI late-
type galaxies in Fig. B1. The low-_'e galaxies that are not well-
fitted by the Beta function, do not disappear after applying our
inclination correction. As many of these galaxies are observed close
to face-on, uncertainties on the ellipticity measurements play an
increasingly negative role on the inclination correction. Moreover,
morphological features such as bars and spiral arms can make the
galaxies’ ellipticity to appear flatter than they really are, inhibiting
an accurate deprojection. Alternative methods to determine edge-on
_'e measurements will be explored in future work.

Nonetheless, the edge-on projected distribution becomes only
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Figure B1. Observed and edge-on projected _'e distributions for SAMI
Galaxy Survey late-type galaxies. The data are shown in black, whereas
the blue line shows the best-fitting Beta function. The 1 − f width of the
distribution changes from 0.275 to 0.234 between _'e and _

edge−on
'e

, and
we also detect an offset of Δ_'e = 0.055 towards higher _'e when the
measurements are projected to edge-on.

mildly narrower (Δ_'e = 0.041) and shifts slightly towards higher
_'e from 0.586 to 0.641. As these changes are relatively small,
we do not expect our results on detecting a bimodality in the _'e
distribution to change significantly due to the effects of inclination.

APPENDIX C: THE BAYESIAN MIXTURE MODEL IN
DETAIL

C1 Model description

For each galaxy in our sample, we have measurements of its stellar
mass ("∗) and a proxy for the spin parameter measured within one
effective radius (_'). We aim to model a galaxy’s spin parameter,
which we label H to keep with standard notation in the literature,
in terms of its stellar mass. We do this by building a probabilistic
mixture model. In this appendix, we describe the Bayesian Mixture
model used in Section 3.4 in detail.

A mixture model uses a number (in this case two) of different
probability distributions to model a set of observed data. The prob-
ability of a single data point being drawn from one distribution is
denoted c. This implies that the likelihood function is of the form:

?(H |)) ∝
#∏
==1

(
c?1 (H= |)1) + (1 − c)?2 (H= |)2)

)
(C1)

where ?1 and ?2 refer to the different probability distributions and
) is a vector of model parameters.

In this case, we assign ?1 and ?2 to be two distinct beta dis-
tributions, each with shape parameters U and V (i.e., )1 = (U1, V1)
and )2 = (U2, V2)). We allow these shape parameters to vary as a
function of stellar mass via a first order polynomial:

8 = 1, 2 (C2)
log(U8) = 28 + 38"∗ (C3)
log(V8) = 48 + 58"∗ (C4)

These correspond to eight free parameters. Note that the beta distri-
bution’s shape parameters must be constrained to be positive, and
as such we vary them on the logarithmic scale, such that U8 and V8
are always greater than zero.
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Table C1. A summary of our prior choices for the Bayesian mixture model
presented in Section 3.4. Each parameter (or transformation of a parameter)
below is assigned a Gaussian prior with the given location (mean) and scale
(standard deviation). The exception is the f parameter, which has a half-
Gaussian prior (i.e a Gaussian probability distribution for positive values
and zero probability for negative values).

Parameter Location Scale
log(21) log4 (4.5) 0.5
log(31) 0 0.5
log(22) log4 (6.9) 0.5
log(32) 0 0.5
log(41) log4 (4.4) 0.5
log( 51) 0 0.5
log(42) log4 (100) 0.5
log( 52) 0 0.5
` 0 1
f 0 2

Furthermore, we allow the mixture probability, c, to vary with
stellar mass. This represents the well-known dependence of kine-
matic morphology with stellar mass, with massive galaxies much
more likely to be slow rotators (e.g., Emsellem et al. 2011; Brough
et al. 2017; Veale et al. 2017; van de Sande et al. 2017a; Green et al.
2018; Graham et al. 2018). Since c is a probability, it must lie be-
tween 0 and 1. To ensure this is always the case, we use the sigmoid
function to map any real number to the interval [0, 1], which also
introduces a further two parameters to the model (` and f):

c("∗) =
1

1 + exp(−("∗ − `)/f)
(C5)

To summarise, our model has 10 free parameters; eight corre-
sponding to the change in beta distribution shape parameters with
stellar mass and two corresponding to how the probability of being
drawn from either beta distribution varies with stellar mass. The
final likelihood function is therefore:

?(H |"∗,", #, `, f) ∝
#∏
==1

(
c("∗, `, f) ?1 (H= |U1 ("∗), V1 ("∗))+

(1 − c("∗, `, f)) ?2 (H= |U1 ("∗), V1 ("∗))
)

(C6)

C2 Priors

Aswith anyBayesian analysis, each free parametermust be assigned
a prior. Our prior choices are described in Table C2. We conduct
simulations to see the effect of our prior choices (known as “prior
predictive checks") and ensure that our prior choices do not give rise
to unphysical distributions of simulated data. Reasonable changes
to these priors do not change our conclusions.

APPENDIX D: FAST AND SLOW ROTATORS IN ATLAS3D

One of the goals of this paper is to investigate whether or not we
can identify multiple kinematic populations in data where impact of
seeing and data quality cannot be ignored. We present a framework
to quantify how well kinematic identifiers are separated in the _'e -
Ye diagram based upon the ratio of the True Positive Rate and the
True Negative Rate. Here, we re-analyse results from the ATLAS3D

survey, using data as presented byEmsellem et al. (2004), Cappellari
et al. (2011), Krajnović et al. (2011), Emsellem et al. (2011), and
Cappellari et al. (2013a,b), adapted to definitions used in this paper.
For more details on these measurements we refer to van de Sande
et al. (2019).

In Fig. C1 we first present the distributions of 〈:51,e〉, _'e and
^ (see Section 5.3)which is the the ratio of the observed velocity+obs
and themodelled velocity+ (fq = f') from JAMmodels. Note that
for the ^ values, we did not imply a JAM quality cut, as non-regular
rotators are not expected to be well described by JAM models. The
vertical dashed lines in Fig. C1 show the commonly used selection
regions for that parameter. However, we do not find clear evidence
for a bimodal distribution from these distribution, although this
does not exclude the existence of a bimodality. Instead, it shows
that a larger sample of galaxies is required to detect a multimodal
distribution if these parameters are used independently.

D1 Regular and non-regular rotators from kinemetry using
ATLAS3D data

Following Krajnović et al. (2011) we use kinemetry to mark the
condition a galaxy can have, using 〈:5/:1〉 − 〈:5/:1error〉 < 0.04
to select fast rotators. We present the measurements in Fig. D1.
Similar to SAMI data, we find that galaxies with high 〈:51,e〉 also
have higher values of _'e towards low stellar mass. When using
the ROC analysis with the confusing matrix from Table 1, we find
that the optimal selection region that starts at _' = 0.12 only has
a True Positive Rate of 77.8 percent with a False Positive Rate of
1.9 percent. However, the Positive Prediction Value for ATLAS3D
data is significantly higher than for SAMI data, with respectively
89.7 versus 70.6 percent, with a similar result for the MCC with
ATLAS3D=0.83 and SAMI=0.66. The TPR for the Emsellem et al.
(2011) and Cappellari (2016) selection criteria are similar but rel-
atively low at 62.2 percent. The MCC values are 0.747 and 0.757,
respectively. Thus, from a statistical point of view, we do not find a
significant difference between the selection criteria from Emsellem
et al. (2011) and Cappellari (2016), but we note that for example the
Ye < 0.4 criteria was introduced to exclude counter-rotating disks
from the SR class.

D2 Fast and Slow rotators from JAM modelling using
ATLAS3D data

We will now use the ^ parameter to classify galaxies as ^SR (^ <
0.65) and ^FR (^ > 0.65). We use the JAM model parameters from
Cappellari et al. (2013b), without applying a quality cut or limit on
the inclination, but we note that with "&D0;8CH"> 0 or inclination
8 > 60◦ the results are qualitatively the same. The data and the ROC
analysis are presented in Fig. D2. Similar to kinemetry, we find
that galaxies with low ^ also have higher values of _'e towards
low stellar mass. The optimal selection region is now considerably
higher than the selection box fromCappellari (2016), with a starting
value of _' = 0.20 and a TPR = 87.5, an FPR = 3.5, a PPV = 87.5,
and an MCC = 0.875. In contrast, the TPR for the Emsellem et al.
(2011) and Cappellari (2016) selection regions are both 51.8 with
MCC = 0.674 and 0.682, respectively.

While the ^ parameter presents the cleanest separation within
the _'e -Ye diagram of all identifiers that we have used, the opti-
mal selection is significantly higher as compared to the kinemetry
optimal selection box. However, a closer look at the MCC distribu-
tion in Fig. D2(c) reveals that the peak of the MCC values is quite
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Figure C1. Distributions of 〈:51,e 〉, _'e and ^ from the ATLAS3D survey. The vertical lines in panel (a) and (c) and indicate the proposed division for regular
and non-regular rotators (panel a) and slow and fast rotators using JAMmodelling panel (c), whereas the wider gray region in panel (b) indicates the Cappellari
(2016) FR/SR selection region that includes an ellipticity term.
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Figure D1. Spin parameter proxy versus stellar mass and ellipticity using ATLAS3D data. Data are colour coded by 〈:51,e 〉 (panels a and b). Round symbols
show Regular Rotators, and diamond symbols. We show the RRs and NRRs in the _'e -Ye space in panel (b) with the optimal selection region (black), the SR
selection box from Cappellari (2016) in grey, and from Emsellem et al. (2011) as the dashed line. Panel (c) suggest that the _'e -Ye space is an effective way
to distinguishing between regular and non-regular rotators derived from ATLAS3D data.
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Figure D2. Spin parameter proxy versus stellar mass and ellipticity using ATLAS3D data. Data are colour coded by ^ (panels a and b). Round symbols show
Regular Rotators, and diamond symbols. We show the ^FR and ^SR in the _'e -Ye space in panel (b) with the optimal selection region (black), the SR selection
box from Cappellari (2016) in grey, and from Emsellem et al. (2011) as the dashed line. Panel (c) suggest that the _'e -Ye space is a powerful method to
distinguishing between the two types of rotators as identified by ^ from JAM modelling of ATLAS3D data.
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broad, and the relatively small ATLAS3D sample size could offset
the _'e starting value to higher values. Nevertheless, the fact the
kinemetry and ^ selection boxes differ quite considerably should
be a warning that even with high quality IFS data, the question of
how to select fast and slow rotators from the _'e -Ye diagram is
sensitive to the kinematic identifier used.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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