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ABSTRACT

Integral Field Spectroscopy (IFS) surveys are changing how we study galaxies and cre-
ating more data than we have had before. The large number of resulting spectra makes
emission line fitting with visual inspection an unfeasible option. Here we present The
Machine, an artificial neural network (ANN) that determines the number of Gaussian
components needed to describe the complex emission line velocity structures observed
in galaxies. To demonstrate The Machine’s capabilities we have applied it to two
distinct surveys using two different IFS instruments; the S7 survey using the Wide
Field Spectrograph and the SAMI galaxy survey. We demonstrate that using an ANN
is comparable with astronomers in determining the best number of Gaussian com-
ponents to describe the physical processes in galaxies. The advantage of our ANN,
The Machine, is that is capable of processing the spectra of thousands of galaxies in
minutes compared to the years it would take individual astronomers to complete the

same task by visual inspection.

Key words: Emission line:galaxies — neural network — multicomponent fitting —

optical:galaxies

1 INTRODUCTION

Integral Field Spectroscopy (IFS) is changing our approach
to studying galaxy evolution. Surveys such as CALIFA
(Calar Alto Legacy Integral Field Area, |[Sanchez et al.[2012]),
SAMI (Sydney-AAO Multi-object Integral Field, |(Croom
et al.|2012), MaNGA (Mapping Nearby Galaxies at Apache
Point Observatory, Bundy et al||2015), and S7 (Siding
Spring Southern Seyfert Spectroscopic Snapshot Survey, [Do-
pita et al.|2014) are building databases of spatially resolved
spectra of hundreds to thousands of galaxies in order to ex-
plore galaxy evolution as a function of morphological and
spectroscopic classification, and environment. Integral Field
Spectroscopy provides a powerful probe into the spatial vari-
ation of physical processes across galaxies. For example,
single-fibre redshift surveys such as SDSS (Sloan Digital Sky
Survey) and GAMA (Galaxy And Mass Assembly, [Driver
et al.|2009) observe only a single spectrum for each galaxy,
typically from its core. As such, one can often misidentify
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the global properties of a galaxy, (e.g. Richards et al.[2014;
Ho et al.||2014} [Hampton et al.|[in prep).

Figure (1] highlights the situation of changing physical
processes across a galaxy showing the variation in emis-
sion line profiles between the core (orange) and away from
the core (magenta) of the S7 galaxy NGC 5728. The orange
lines show an obvious double peaked emission line profile at-
tributed to gas moving in two directions, e.g. an outflow of
gas in the disk of the galaxy. IF'S provides a powerful probe
to understand the broader nature of galaxies.

Access to the wealth of information from an IFS survey
comes at a price: data volume. Not only are advances in IFS
technology pushing the previous sample size boundaries but
each galaxy observation now contains as many individual
spectra as an entire early redshift survey. Datacubes of mul-
tiple gigabytes, with thousands of spaxels (spatial pixels) for
each galaxy, are not uncommon.

Data reduction pipelines (e.g. [Husemann et al.|[2013;
Sharp et al.|[2015; [Allen et al.||2015a)) are efficient ways to
convert raw data into a final spectral datacube for analy-
sis, but interpreting these spectra remains a significant chal-
lenge. The data volume is too great to allow visual inspection
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of all spectra individually. Some form of automated analysis
is required to extract the important information from the
spectra and to target galaxies for further investigation.
Automated continuum and absorption line fitting is rou-
tinely used to understand the stellar populations within
galaxies, subsequent emission line fitting provides insight
into active star formation, AGN (active galactic nuclei) ac-
tivity and shock properties of galaxies. This type of pre-
analysis is time consuming for IFU surveys and fitting each
emission line by hand is no longer a feasible option. We
now understand that there can be multiple processes be-
hind a single emission line, creating further steps to our pre-
analysis. Automated emission line fitting, including multi-
component fitting for situations with multiple physical pro-
cesses contributing to emission lines, are currently in use
(e.g. LZIFU; [Ho et al.lin prep). However there is still hu-
man input required to decide if more than one component
is necessary to describe each emission line. This paper de-
scribes our automated machine learning algorithm to remove
this time consuming human input and streamline multi-
component emission line fitting for large surveys.

2 SPECTRAL PROPERTIES FROM DATA
CUBES

Analysis of a galaxy data cube requires the measurement
of key physical properties extracted from individual spec-
tra of each spaxel (spatial pixel). The spectrum at each
spaxel typically contains an emission-line spectrum, aris-
ing in shock-heated or photoionised gas, superimposed upon
continuum light, either from the underlying stellar popula-
tions or an active galactic nucleus. Accurate modelling and
subtraction of the underlying continuum is critical in cor-
recting for stellar absorption which would otherwise lead to
the incorrect measurement of coincident emission-lines, e.g.
predominantly those of the Hydrogen Balmer series, Ha and
Hp, in which stellar absorption can have a high equivalent
width.

Each line of sight into the galaxy can encompass gas
at different velocities and with different excitation mecha-
nisms. We fit multiple Gaussians to the resulting compos-
ite emission-lines in order to explain the underlying physi-
cal processes occurring within a galaxy. However, we cannot
know the number of physical components within a resolution
element.

To fit the spectral data cubes we use the automated fit-
ting package LZIFU (Ho et al.|in prep)). This program, writ-
ten in the IDL programming language, fits multiple Gaus-
sian components to each emission-line complex in a spec-
trum after correcting for the underlying stellar absorption
component. The emission lines are fit simultaneously, and
thus each component has a single velocity and velocity dis-
persion. However, the relative fluxes of the emission lines are
left free, and the line ratios for each component can vary (for
a full description see [Ho et al.|jin prep).

S7 (The Siding Spring Southern Seyfert Spectroscopic
Snapshot Survey; |Dopita et al.|[2014) and SAMI (the SAMI
galaxy survey; |Croom et al.||2012)) are the first two galaxy
surveys we have used in our study to determine if machine
learning can help with the time constraints of getting data
out for a large survey. For each galaxy observed we have

~1000 spaxels with each spaxel associated with a high spec-
tral resolution spectrum. Each spectrum is fit in turn with
1, 2, and 3 Gaussian components for the strongest emission
lines. The significant challenge is in identifying which set of
Gaussian components best describes the data at each spaxel.
Visual inspection to make the identifications, which is the
common approach, for a single galaxy can take up to 1 hour.
For small surveys this is feasible, but with surveys the size
of SAMI (~3000 galaxies) this means ~ 125 days continuous
work, or multiple years for a single astronomer.

F-tests are used to automatically identify the best fit
number of Gaussians to spectral emission lines, by deter-
mining if increasing the number of gaussians increases the
significance of the fit. However, the f-test is based on the x>
value of the fit which, when using multiple Gaussians, may
fall into a local minimum rather than finding the global mini-
mum as is done when using Bayesian statistics. We have also
looked at the precision of using f-tests, as is done in | McElroy
et al.[(2015)), in comparison to astronomers and our machine
learning algorithm, see section Analysis has been done
using Bayesian statistics on some SAMI galaxies. The re-
sults were good in determining the number of components
however it took over one minute for an individual spaxel.
This would mean the SAMI survey would take over 2,000
days to complete, much longer than using visual inspection.

The Machine Learning algorithm we have chosen to
implement is an artificial neural network (ANN) designed
to learn and make classification decisions across an entire
survey, fast and reliably. By using an ANN trained by as-
tronomers we have a system that is not only self-consistent
but is able to reliably identify differences between the num-
ber of fit components and the best solution for an individual
spectrum in a timely fashion.

3 A SUPERVISED ARTIFICIAL NEURAL
NETWORK

For large surveys we require a reliable, self-consistent, re-
producible and quick automated process of determining the
best number of Gaussian components needed for each spaxel
of a galaxy. We have made comparisons between individual
spectroscopists and found a range of decisions for the num-
bers of components required for each spaxel for the same sets
of galaxies. Of more concern is that repeat classification of
the same galaxy by the same individual can also result in a
range of choices.

The use of machine learning in Astronomy is not a new
idea. Contemporary examples include the prediction of solar
flares (e.g.|Bobra & Couvidat|2015)), understanding Gamma-
ray emission from AGNs (e.g.|Doert & Errando|2014; Hassan
et al.||2013), and the classification of galaxy types (e.g. Ku-
minski et al.||2014). Machine learning covers a wide range
of distinct classes of artificial intelligence (AI) such as Ar-
tificial Neural Networks (ANNs), Support Vector Machines
(SVMs), and Random Forest algorithms, that learn without
being explicitly programmed. Each have their benefits and
weaknesses but all are based on the same underlying princi-
ple, they learn from a training set and create models to be
used to predict outcomes. We have chosen to use an Artifi-
cial Neural Network (ANN) to build a classification model
for multi-component emission line fitting.
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Figure 1. NGC5728. (a) Blue and (b) red spectra from a core spaxel. Note the double peak in the emission lines. (c¢) Blue and (d) red
spectra from a spaxel away from the core of the galaxy. Note the difference in the shapes of the emission lines in comparison to the
top plots. (e): DSS image of NGC5728 with WiFeS FoV overlaid in the yellow box. Magenta 'X’ indicates the outer spaxel, orange 'X’

indicating core spaxel.

An Artificial Neural Network (ANN) is a computer sys-
tem comprised of nodes, or units, which perform calculations
with a pre-determined equation. These nodes sit in layers
which have different jobs depending on where they sit in the
ANN design. Figure [2] presents a simplified example of an
ANN to classify something as ‘a cat‘ or ‘not a cat‘ based
on observable properties such as the ‘number of legs‘ and
‘size‘. Each node in the ANN is represented by a circle. We
are looking at a supervised ANN that is trained by using
labelled examples, i.e. we give it answers or labels for each
example to compare itself to.

An ANN has three types of layers; an input layer, hid-
den layers, and an output layer. Each node in the input
layer, represented as z; in the following equation, is a pa-
rameter value making up a feature vector which, in this case,
describes the number of legs and size of the things we want
to classify as ‘a cat‘ or ‘not a cat’.

From the input layer these two parameters are sent into
the next layer, the first hidden layer of our ANN. The pa-
rameter values are put into a sigmoid function with different
weights on each parameter. For each node in the first hidden
layer the node performs the calculation described in equa-
tion where 6;; are the weights for the node i on the input
parameters x; between the input and first hidden layer.

a; = I S (1)

2
L+exp() 0},25)

=1

Each node in the first layer uses the same parameters x1
and x2 but different weights G}j corresponding to the specific
node.

Once the values of the sigmoid functions are calculated
for each node in the first layer they are passed onto the next
layer, in this case the second hidden layer. The process is
repeated but using the values calculated from the previous
layer and again different weights corresponding to the dif-
ferent nodes in the second hidden layer. Equation [2] shows
the functional form of the equation calculated in the nodes
of the second hidden layer.
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At this point we have reached the end of the hidden
layers.

The output layer is the layer that determines the clas-
sification of our input parameters as a cat or not a cat.
The values b; from the second hidden layer are sent into the
output layer where one last set of sigmoid functions are cal-
culated with again different weights. Equation [3| shows the
equation calculated by the nodes in the output layer.

1

3
L+exp() 63b;)
j=1

Ci =

®3)

The classification decided on by the ANN is determined
by which output node has the higher value.

During the training phase of the ANN a cost is also cal-
culated. The cost function, equation @ describes how close
the classification from the ANN was to the labels we gave it.
The cost is summed over all output nodes and all training
examples. The second term in the cost function sums the
weights from each layer with a regularisation parameter, A,
which helps stop any particular weights from taking over
the function. A is also know as a tuneable parameter. By
changing the value of lambda and comparing the results of
the cost function during training we can determine the best
value, between 0.01 to 10, to minimise the cost function. m
is the number of training examples.

1 A k
J=— % (~yilog(er) — (1—ya)log(1—ci) + 5> 05)(4)
i ijk
The cost function is then minimised in the training
phase by iterating over the entire training set using an oc-
taVEEI script fmincﬂ The minimisation uses the cost func-

I https://www.gnu.org/software/octave/

2 Originally written by Carl Edward Rasmussen and added to by
the Stanford Machine Learning online course. fmincg is based on
Polack-Ribiere minimisation.
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ai=
sigmoid(x1,x2)

b1=
sigmoid(a1,az,as)

X1 =
number of

Ci=
sigmoid(b1,bz,bs)

ax=
sigmoid(x1,x2)

Co=
sigmoid(b1,bz,bs)

as=

sigmoid(x1,x2) Is Not Cat

Input layer Hidden layers Output layer

Figure 2. A simple Artificial Neural Network design. The circles indicate the nodes and are grouped into the 3 layer types: Input, hidden
and output. This ANN is used to decide if something with the input parameters of size and number of legs is ‘a cat‘ or ‘not a cat‘. At
each layer, calculations are done to the values of the previous layer. The final classification is then decided based on which node in the
output layer has the largest value.

tion, equation EI, to alter the weights at each node to return
a classification closer to the labels for each training example
in the next iteration. Each successive iteration adjusts the
weights again to create a decision matrix capable of match-
ing the classifications of the labelled training examples.

In the case of our example, in figure 2] we chose two
parameters but these are not enough to adequately classify
something as a cat or not. For example, a small dog would
be classified as a cat using this ANN. For this reason we have
to give an ANN enough information to adequately describe
the different classifications we would like it to make.

Our ANN, which we have called The Machineﬂ has two
hidden layers with 15 nodes in each layer. The input layer
has 86 input parameters making up the feature vector for
each example and the output layer has 3 nodes correspond-
ing to the best number of components; 1, 2, or 3 components.

3 The name of our ANN has been based on the Artificial Intelli-
gence built by a Mr Finch in the TV series 'Person of Interest’.
The outer program that controls the input and output of The
Machine is called Finch.
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4 IDENTIFYING THE CORRECT MODEL

The goal of our research is to create a reliable, fast, self-
consistent and easy to use method of determining the most
likely number of components needed to describe an emission
line. We have done this by designing an ANN to select the
best number of Gaussians components for the spectra in each
spaxel. As with all machine learning algorithms, we need to
train the algorithm before setting it loose on survey data.
The training involves giving The Machine labelled examples
of what it might receive. To do this we use astronomers to
make the decisions (section, labelling each spaxel with the
number of components that most likely describe the emis-
sion. Then The Machine is trained with these examples and
tested to confirm that we have set the tuneable parameters,
e.g. A\, the number of iterations, and the number of training
examples, are set correctly.

Our approach to training and using our ANN is as fol-
lows:

(i) Create a training set of examples of each type of emis-
sion line fit we expect to see in a survey, with labels.

(ii) Create feature vectors, or labelled examples, a numer-
ical set of parameters associated with each example

(iii) Use half of these examples to train the ANN to build
a model, using the labels to correct the weights. This will
be the training set.

(iv) Use a quarter of the labelled examples as a subset to
optimise the tuneable parameters of The Machine, not used
in training. This will be the cross-validation set.

(v) Compare results of the ANN in training to the re-
maining quarter of labelled examples, also unseen in train-
ing. This will be the test set.

(vi) Compare the results of the ANN to each individual
trainer.

The test set allows us to calculate an accuracy of The
Machine and understand how many more examples we may
need in training, while the cross-validation set allows us to
tune the regularisation parameter, A\, to best suit the prob-
lem. The testing and cross-validation sets also allow us to
understand how many nodes each layer should have to opti-
mise the algorithm and how many layers the ANN needs to
give the outcomes that match our human trainers closest.

Each example has 86 parameters that describe the emis-
sion line fits. The parameters were determined to be the
numbers related to a fit of multiple gaussians that we be-
lieve to be important in determining if a particular fit is
better than another. These cover signal-to-noise ratio of the
strongest emission lines, relative contribution of each com-
ponent to the total flux of an emission line, and velocity
dispersion. We have used the emission line values for lines
that are strong and/or commonly fit for emission line stud-
ies. All 86 input parameters making up the input feature
vector into The Machine are listed in table [Il

5 TEST SAMPLES

The Machine, our ANN, is a supervised learning algorithm.
The supervision comes from training with labelled examples,
i.e. we give The Machine the answers in order to compare
its classifications to. The Machine then uses this information

to correct itself. The following subsections explain how we
have used two test cases, the S7 and SAMI galaxy surveys,
to test, train and run The Machine in order to quickly and
reliably classify the number of components needed for each
spaxel of a galaxy.

During the testing of the ANN we discovered that each
survey has to have its own training set, due to the differences
in each survey, e.g. signal-to-noise of the most common emis-
sion lines, spectral resolution, and the overall galaxies tar-
geted by each survey (S7 has targeted galaxies with very
strong Active Galactic Nuclei-like emission lines). When
running the ANN on the SAMI survey after being trained
with S7 the results showed no correlation with our SAMI
trainers.

5.1 Siding Springs Southern Seyfert
Spectroscopic Snapshot Survey : S7

The Siding Springs Southern Seyfert Spectroscopic Snap-
shot Survey (S7, Dopita et al.|[2015) is a survey of ~130
Seyfert galaxies, observed with the Wide Field Spectrograph
(WiFeS, Dopita et al.|[2010) instrument on the ANU 2.3m
telescope at Siding Spring Observatory. These galaxies are
at redshifts less than 0.05 and thus use most of the field of
view of the WiFeS detector. S7 is intended to explore the
narrow and broad line regions in Seyfert galaxies and hence
has a large number of galaxies with underlying broad emis-
sion lines. For full details about S7 we refer the reader to
Dopita et al.| (2015). Our S7 training set is eight galaxies
from the initial data release. These galaxies were chosen to
cover the full range of activity within the sample; Seyfert
1’s, Seyfert 2’s, LINERs and star-forming galaxies.

Manual classification entails an astronomer looking at
every observed spectrum along with the LZIFU fits with 1,
2, and 3 Gaussian components and the fit residuals. Concen-
trating on the strong emission lines, the astronomer decides
the minimum number of components needed to reproduce
the spectrum within the noise. As this was done for every
spaxel, this resulted in a 2D component mask of the galaxy
with values of 1, 2, or 3.

We found that the astronomer did not agree for ~ 25%
of cases. To counteract this we trained and tested the ANN
using a clean sample of ~ 2500 spaxels for which all three
astronomers agreed on the number of components.

5.2 Sydney-AAQO Multi-object Integral field:
SAMI

The SAMI Galaxy Survey (Croom et al.|2012) is a sur-
vey of ~ 3400 nearby (z < 0.05) galaxies all observed with
the SAMI instrument on the 4-metre Anglo-Australian Tele-
scope at Siding Spring Observatory. The survey is made up
of four volume-limited galaxy samples with the aim to cover
a broad range in stellar mass and environment. The survey
uses SAMI fibre 'hexabundles’ to map these galaxies out to
>~ 1 effective radius. As the SAMI bundles have only 61
hexabundles to map the galaxies and with the chosen bin-
ning scale of 0.5” (see |Sharp et al.|[2015 for details), each
SAMI galaxy has fewer spaxels than the S7 galaxies.

As with S7 we used eight galaxies in our training set,
covering both strong and weak emission line galaxies and

© 2015 RAS, MNRAS 000, [1}-??
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Table 1. This table presents each input parameter given to The Machine as the input vector. Each parameter subscripted with EM are
calculated for each of the following emission lines: Ha, HB, [N11]A6583, [SI]AN6716, 6731, [O11]A5007.

Seyfert and star-forming galaxies. Each spaxel in these eight
galaxies were manually classified by five astronomers in the
same manner as with S7. As the galaxies did not always fill
the field of view of SAMI, pixels with no signal were left
unclassified.

The SAMI fitting process includes the addition of errors
in the continuum fit around Ha and HS to the Ha and
Hp flux errors. Outside of the galaxy, where there are no
emission lines, this process removes the emission line fluxes.

From the five trainers, we label a spaxel by calculat-
ing the most common classification between the five as-
tronomers. This, again, gives us a very clean sample of
~ 2500 spaxels to train and test The Machine with. Again we
don’t find a 100% agreement between trainers but a ~ 50%
agreement between trainers. The increased number of train-
ers corresponds to the lower percentage of agreement be-
tween them, than we see with S7.

6 ACCURACY

We assessed the accuracy of The Machine after training us-
ing the subset of trainer classified input examples set aside
for testing and cross-validation. We define the accuracy (how
well The Machine matches the labels to our Trainers) of the
machine as its ability to recall the same classifications as our
trainers and the precision in making its decisions.

Equations[5|and[6]show how the recall (R) and precision
(P) values are calculated for each number of components. N
is the number of examples of which M (The Machine) and
T (our trainers) classify with the conditions for M and T.
Together these describe how well The Machine can classify
examples in comparison to our trainers. These values are
calculated for each component classification,

Nym=T
Ry = e M=T 5
M > Num,1=1,2,3 ®)
Ny=r
Pr= M 6
M > Nm=1,2,3,T ©)

More completely, the recall Ry where M refers to The
Machine, measures the consistency The Machine has for each
classification related to how often it misclassifies an exam-
ple of that component number. For example, if The Machine
correctly classifies 200 examples as 1 components but mis-
classifies 50 1 component examples as 2 or 3 components, it

© 2015 RAS, MNRAS 000, [1}-77

has a recall of Ry = 200/250 = 75% for 1 component classi-
fications. A recall value is calculated for each classification,
1 to 3 for SAMI and 0 to 3 for S7. The precision Py mea-
sures how often The Machine will misclassify an example
as a particular number of components. For example, if The
Machine correctly classifies 200 examples as 1 components
but also incorrectly classifies 25 examples (of 2 and 3 com-
ponents) as 1 component then The Machine has a precision
of P1 = 200/225 = 89% for 1 component classifications. Pre-
cision values are, like recall values, calculated for each clas-
sification.

This same comparison can be repeated using our in-
dividual trainers to show how The Machine’s performance
compares to astronomers visual inspections. Taking the
training set of galaxies, we formed new component maps
from N-1 trainers’ classifications. For SAMI, this means we
created 5 new combined classification maps using 4 of the
5 trainers for each one successively. For S7, we created new
combined maps using 2 of the 3 trainers successively. We see
a large spread in the agreement of classifications through the
recall and precision values, as is shown in ﬁgure@by the solid
lines. The dashed lines in figure[d present The Machine’s re-
call and precision values for each of the two surveys. We see
that the largest spread in the ability of people agreeing with
each other is between 2 and 3 components, while agreement
is very good over 1 component fits. We have also shown
that The Machine does as well at making the classification
decisions for spectra as using individual people.

The Machine is able to define differences between clas-
sifications based on our training sets. To show this explic-
itly figures [5| and |§| present the component maps defined by
The Machine and the trainers for a S7 galaxy and a SAMI
galaxy, respectively. These galaxies were not used for train-
ing or cross-validation. We see that The Machine defines a
component map which is between all of our trainers maps
in both the SAMI and S7 galaxies.

The Machine’s recall and precision is as good as our
human trainers. On the full training sets for SAMI and S7,
each trainer selected classifications based on their own biases
to what they are seeing. By using those spaxels for which
all trainers agreed we avoid these individual biases. Figure
[7]shows the number of spaxels that each trainer classifies as
each number of components for the full training and testing
set for SAMI and S7. The Machine classifications are also
shown to demonstrate the biases of the ANN. In both cases
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Machines results from training.

of SAMI and S7 we see that The Machine classifies the com-
ponents in a similar manner to the trainers, following the
average bias of the trainers as a whole. The Machine is bi-
ased towards 1 and 2 components but we can see that 2 of
the 3 trainers are also biased towards 2 components over 1
components. This may also be the case that the S7 galax-
ies do have more 2 component spectra than 1 component
spectra. S7 is selected to be very interesting Seyfert galaxies

which we expect to require multi-component fits to express
the data.

6.1 Comparison to an F-test

In addition to comparing The Machine to our trainers we
have also compared the results of using an f-test to our
trainers. Figure [§] presents the results of using an ftest on
our training set of galaxies. The ftest selects 1-components

© 2015 RAS, MNRAS 000, [1}-??
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Figure 5. Component maps defined by The Machine and the three S7 trainers. Green for a 3-component fit, blue for a 2-component fit

and yellow for a 1-component fit.

more often than our SAMI trainers. In addition, the pre-
cision obtained by using an ftest is comparable to people
however the recall is much lower pointing to the fact that
only ~20% of the 1-component selections the ftest makes
match to our trainers. Due to the discrepancies among our
trainers on selecting 2, and 3 components the ftest is com-
parable in both recall and precision. In comparison to The
Machine, however, the ftest is not as capable as representing
another astronomer and their choices of classifications.

7 APPLICATION TO S7 AND SAMI

As presented in the previous sections, the LZIFU code
, in combination with The Machine, can be
used to provide a reliable decomposition of the different
emission-line components present in galaxies observed with
integral fields spectroscopy. With the availability of a reliable
decomposition analysis for multiple emission-lines spanning
the full optical spectrum and for each of our survey sources
it becomes practical to undertake an in-depth analysis of
the wide range of physical processes driving emission with
complex composite sources. Early example of such analysis
from the SAMI survey include phenomena such as binary
black-holes (Allen et al|[2015b)), metallicity measurements,
corrected for underlying galaxy disk contamination, for iso-

lated HII regions embedded within spiral galaxies (Richards

© 2015 RAS, MNRAS 000, [[}-??

2014)), and the identification of shocks and outflows

in modest luminosity star-forming galaxies (Ho et al.|2014}
2015).

Figure [9] shows the Hubble Space Telescope (HST) im-
age of the Seyfert galaxy NGC7582, whose central regionhas
been observed with WiFeS as part of S7 (blue rectangle in
figure E[) This galaxy has a large star-forming disk, visi-
ble in the image. Perpendicular to this disk is an ionisation
cone with an opening angle of 110 degrees that is excited
by the central AGN, highlighted in figure [I0] and described
in [Dopita et al (2015). The gas within this cone is highly
ionised and extends to 15kpc. The counter-cone is also visi-
ble in our optical observation but is partly obscured by the
dust of the star forming disk. The red line on figure [J] in-
dicates the major axis and the circle indicates the centre
where the AGN is located. The S7 observation of NGC7582
has been fit with 1, 2, and 3 components using LZIFU and
then run through The Machine, to obtain the merged com-
ponent maps. The decomposition obtained with 1zifu and
The Machine is shown in figure [I0] for NGC 7582.

The decomposition of emission lines into different com-
ponents enables the separation of the different excitation
processes occurring within a galaxy. In NGC7582, the de-
composition of the emission lines separates the galactic disk
from the ionisation cone and counter-cone. In figure [10}]
panels (a), (b), and (c) present the continuum map, 3-
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Figure 6. Component maps defined by The Machine and the five SAMI trainers. Green for a 3-component fit, blue for a 2-component

fit and yellow for a 1-component fit.

colour emission-line flux map ([OIII], [NII] and Hea), and
the [NIIJ/Ha total flux ratio map of NGC5782. Multi-
component line fitting was necessary because these lines are
not always well described by a single Gaussian. The decom-
position of NGC7582 is presented in figure panels (d),
(e), and (f), which show the velocities assigned to each com-
ponent for each spaxel. Component 1 contains the narrowest
emission line components and traces the disk of the galaxy.
We can see the rotation curve of this disk gas in panel (g) as
we trace the axis of rotation from figure [J along the galaxy.
We do not see a turnover in the rotation curve because the
S7 observations are looking at only the central regions of
the galaxy. The second component shown in panel (e) con-
sists of the broadest emission line components and traces
the ionisation cone. We can verify this by looking at the
velocity of the second component, as a function of distance
from the centre, in the area of the cones. The counter-cone
is partly obscured by the galactic disk; we see this in panel
(h). The cone and counter-cone are both moving material at
a projected velocity of +/- 100km/s. The velocity plateaus
in panel (h) suggesting the front cone is outflowing. We see
the mirror of this in what we suspect is the counter-cone,
blue dashed lines. Further analysis is required but beyond
the scope of this research. The remainder of the points in
panel (h) are most likely due to the disk of the galaxy broad-
ened due to beam smearing in our line of sight. The third

component is a secondary narrow component of emission.
In Figure panel (g), the histogram of the velocity dis-
persions of each component, these third components are lo-
cated between the first and second and are labelled in red.
These spaxels have separated narrow peaks with a broader
underlying component. These components may be due to
the ionisation of matter around or at the edge of the cone.
To determine what causes this third component, we have
looked at the ionisation hardness of each component of each
spaxel using the [NII] diagnostic diagram (Baldwin et al.
1981)). Each component is plotted in a separate colour, this
third component (red) shows the highest ionisation. This
indicates that it may be shock-induced.

Although this paper does not go into further detail on
NGC7582, we have shown that the decomposition of emis-
sion lines is important in understanding what is happening
within a galaxy. |[McElroy et al.[(2015) found it beneficial to
fit each galaxy with LZIFU then use an f-test with harsh cut-
offs to determine the component decompositions. In section
however, we have shown that the f-test does not select
components like astronomers and may miss some complexi-
ties in some emission lines.

Surveys are now creating more data than before, mak-
ing it not always feasible to fit emission lines by hand, nor
to make the component decisions by eye. This is where The
Machine is most advantageous. The Machine is able to pro-
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Figure 7. Top: A representation of how many 1, 2, or 3 component classifications made by each trainer (-) and The Machine (—) for the
S7 training set of galaxies. Bottom: A representation of how many 1, 2, or 3 component classifications made by each trainer (-) and The
Machine (—) for the SAMI training set of galaxies. In both training sets The Machine predicts similar numbers of 1, 2, or 3 components

for the training sets.

cess thousands of galaxies and assign the best representation
of emission line fits as well as an astronomer in very little
time. This then allows the deeper analysis of galaxies such as
NGC7582 through the multi-component emission line fits.

Figure presents the results of running the SAMI
Galaxy Survey DR1 data through The Machine. The left
panel shows a histogram of the number of Gaussian com-
ponents classified by The Machine for all spectra. This is a
total of 348,023 spaxels, with the majority being one com-

© 2015 RAS, MNRAS 000, [1}-77

ponent fits. The right panel presents the the percentages of
a galaxy that are described by 1, 2, or 3 Gaussian compo-
nents. This allows us to pin-point galaxies that show mostly
starformation (mostly 1-component fits) and those galaxies
which present as having multiple physical processes ongoing
(greater than zero percentage of 2 or 3 component fits).

In a further study, we will be looking at the prevalence
of multicomponent emission lines in the SAMI Galaxy Sur-
vey. This will mean comparing the number of emission line
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A comparison of the recall and precision obtained by using an ftest on the SAMI training set of galaxies in comparison to our trainers

against each other.

components to the galaxy’s mass, AGN activity, star for-
mation history and other parameters, to look for correla-
tions that may help in identifying certain types of galaxies
or to help understand which types of galaxies contain com-
binations of multiple physical processes. A study of galaxy
type and component fitting is only possible with hundreds or
thousands of galaxies all fit with multiple components. Using
an ANN to make the classifications of the emission line fits
has made it possible to do this study on a short timescale.
Instead of waiting years for an entire survey to be reduced

to the point of multi-component emission line fits by hand,
the reduction can be done in weeks, opening the possibility
of statistical studies of multicomponent emission processes
in a large range of galaxies.

8 CONCLUSION

Complex emission line fitting of spectra is not new. But with
the larger IFU surveys now in progress, automated com-
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Figure 9. HST image of NGC5782. Blue box indicates the S7 FoV and the red line shows the major axis of the galaxy we have used in
our analysis of the WiFeS data. The green circle indicates the centre of the galaxy.

plex emission line fitting is a must. LZIFU has automated Bobra M. G., Couvidat S., 2015, ApJ, 798, 135
the fitting process for up to 3 Gaussian components, but Bundy K. et al., 2015, ApJ, 798, 7
does not have the capacity to determine how many compo- Croom S. M. et al., 2012, MNRAS, 421, 872
nents are the best for a particular spaxel. Our ANN, The Doert M., Errando M., 2014, ApJ, 782, 41
Machine, can, indicating that the complexities of differenti- Dopita M. et al., 2010, APSS, 327, 245
ating between multi-component fits can be solved reliably Dopita M. A. et al., 2014, AAP, 566, A4l
and rapidly. Dopita M. A. et al., 2015, ApJS, 217, 12

We have built The Machine to take in information pro- Driver S. P. et al., 2009, Astronomy and Geophysics, 50,
duced by LZIFU and output the best fit classification to each 12
individual spaxel in each galaxy of a survey. It is a fast, self- Hampton E., et al., in prep
consistent, and reliable system that replaces the need for Hassan T. et al., 2013, MNRAS, 428, 220
years of manual work by astronomers. The breakdown of Ho I.-T. et al., 2014, MNRAS, 444, 3894
the accuracy into recall and precision of The Machine shows Ho I.-T. et al., 2015, MNRAS, 448, 2030
that it is indistinguishable from our human trainers. Ho I.-T., et al., in prep

Our analysis shows that an ANN trained by sets of as- Husemann B. et al., 2013, A&A, 549, A87
tronomers is capable of classifying new galaxies to the same Kuminski E. et al., 2014, PASP, 126, 959
reliability as another astronomer. The only difference is that McElroy R. et al., 2015, MNRAS, 446, 2186
is does not need sleep, food, a break, or to be paid. The Richards S. N. et al., 2014, MNRAS, 445, 1104
Machine is able to consistently, reliably, and quickly classify Sanchez S. F. et al., 2012, A&A, 538, A8
spaxels as needing 1, 2, or 3 Gaussian components so that Sharp R. et al., 2015, MNRAS, 446, 1551

astronomers can focus on the analysis of the emission line
fluxes, velocity dispersions, and velocities to determine what
is going on in the galaxies in their surveys.
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field of the 1st component related to the disk. (e) Velocity field of the 2nd component related to the ionisation cone and counter-cone.
(f) velocity field of the 3rd component related to the interaction at the edge of the ionisation cone. (g) Rotation curve of the disk
gas, points taken from 1st component velocity within dashed lines of (d). (h) Rotation of gas due to the ionisation cones. Plateu at
+/- 100 km/s indicative of the outflowing gas. Contamination from dust obscured emission. (i) rotation of 3rd component. (j) Velocity
dispersions of each component colour-coded by which component. (k) [NII] BPT diagram with components colour-coded to show that
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